

sesstim.univ-amu.fr

Lucie BIARD

Université de Paris INSERM U1153, Equipe ECSTRRA Epidemiology and Clinical Statistics for Tumor Respiratory, and Resuscitation Assessments - APHP Hôpital Saint Louis, Service de Biostatistique et Information Médicale, Paris

Approches bayésiennes pour intégrer des données historiques en épidémiologie clinique

octobre 2019

Cliquez ici pour voir l'intégralité des ressources associées à ce document

Approches bayésiennes pour intégrer des données historiques en épidémiologie clinique

Lucie Biard, MD PhD
INSERM CRESS UMR1153 Equipe ECSTRRA
Hôpital Saint Louis, Paris, France

Programme

- Principes de l'approche bayésienne
- Données historiques
- Méthodes
- Exemple avec un essai clinique de phase 3

Principes de l'approche bayésienne

- L'objectif est d'intégrer les données et connaissances au fur et à mesure qu'elles deviennent disponibles, et de tenir compte de l'incertitude
- Il s'agit de combiner les connaissances a priori avec les observations actuelles d'un critère d'intérêt pour obtenir une conclusion et des connaissances a posteriori
- Connaissances/informations a priori = données pré-existantes, externes
 - Souvent appelées données historiques
 - Résultats d'études précédentes
 - Opinion d'experts, élicitées

Pourquoi utiliser une approche bayésienne?

• Approche naturelle: démarche probabiliste

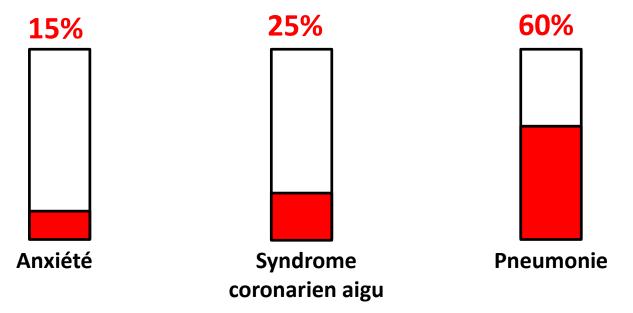
"[...] recent studies show that children also learn in these ways and that they often resemble ideal Bayesian learners" *

- Enrichir les données avec de l'information pré-existante
- En particulier en cas de données limitées (petits échantillons):
 - Contexte spécifique: phases précoces du développement d'un médicament
 - Maladies rares

* Gopnik A. Science 2012;337(6102):1623-7

Exemple – Démarche diagnostique

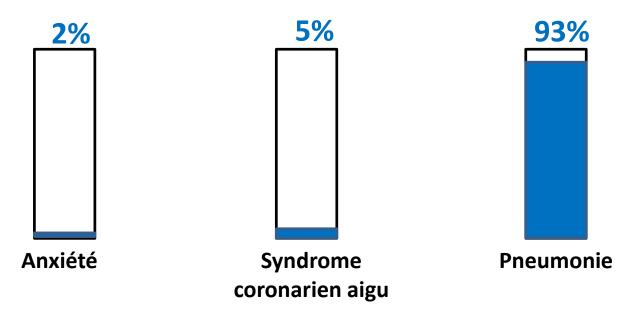
- Un patient se présente avec une douleur dans la poitrine
- Compte-tenu de l'examen clinique initial, on envisage 3 diagnostics



Démarche diagnostique

 Avec les nouvelles données des examens complémentaires (radio de thorax + ECG), on « met à jour » les connaissances et on obtient les probabilités a posteriori

 $Post Test \propto Data \times Pre Test$



Formule de Bayes

Rev. Thomas Bayes

 Les connaissances a priori sont combinées avec les données observées (vraisemblance) et mises à jour en une distribution a posteriori

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

• En termes de distribution: soit $\pi(.)$ la fonction de densité de la distribution du critère d'intérêt Y, de paramètre θ et $L(y|\theta)$ la vraisemblance des données observées

Posterior
$$\propto$$
 Data \times **Prior**

$$\pi(\theta|y) = \frac{L(y|\theta)}{\int L(y|\theta)\pi(\theta)d\theta} \times \pi(\theta)$$

$$\pi(\theta|y) \propto L(y|\theta) \times \pi(\theta)$$

En pratique, un exemple

Critère Y = réponse à un traitement (nb succès parmi n patients)

• Modèle béta-binomial pour les n observations, avec y succès:

$$L(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y} \text{ avec } \theta \sim Beta(a,b)$$

Formule de Bayes :

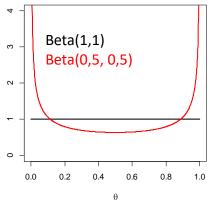
$$\pi(\theta|y) \propto L(y|\theta) \pi(\theta)$$

On obtient a posteriori:

$$\theta | y \sim Beta (a + y, b + n - y)$$

Sans données historiques

- Il faut définir la distribution a priori $\pi(\theta)$
- Pas d'information → a priori non informatif
 - Flat, Vague
 - Peu informatif (weakly informative)
- Par exemple pour θ (probabilité de réponse):
 - $-\theta \sim Beta(1,1)$
 - $-\theta \sim Beta(0.5,0.5)$



• Pour un paramètre défini sur \mathbb{R} : loi normale centrée sur 0 avec variance importante (ex: $N(0, 10^6)$, N(0, 10))

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

Sans données historiques

Exemple : Données actuelles : échantillon de n=20

6 réponses (y = 6) et 14 échecs (n - y = 14)

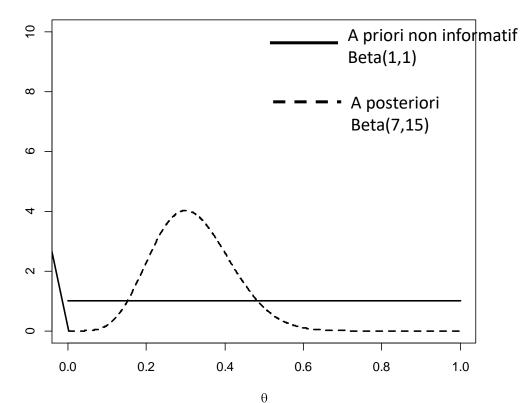
→ proportion observée=30%

A priori:

 $\theta \sim Beta(1,1)$

A posteriori:

 $\theta | y \sim Beta (1 + 6, 1 + 20 - 6)$

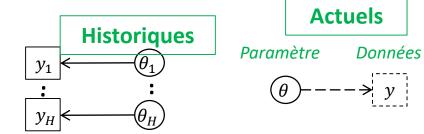


Méthodes d'incorporation de données historiques

- Les données externes ou historiques sont prises en compte à l'aide de la distribution a priori du paramètre d'intérêt, $\pi(\theta)$, qui est alors informative
- Différentes méthodes, en fonction du type d'information externe disponible
 - Données agrégées : statistiques publiées (ex: OR, IC95%), expertise, élicitation d'experts
 - Données individuelles : accès aux observations individuelles
- Et de la comparabilité entre données actuelles y et historiques y_1, \dots, y_H (jeux de données historiques 1 à H)

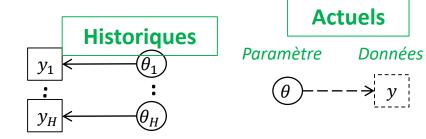
Les données historiques sont considérées :

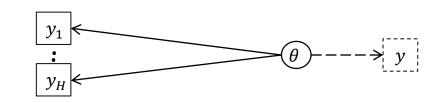
Non pertinentes



Les données historiques sont considérées :

Non pertinentes : exclusion

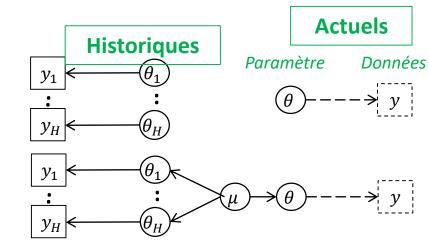


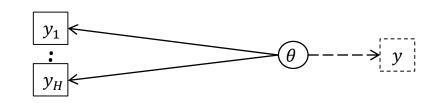


Les données historiques sont considérées :

Non pertinentes

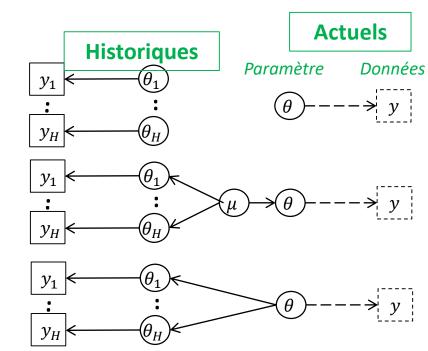
Interchangeables (exchangeable)

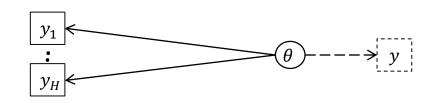




Les données historiques sont considérées :

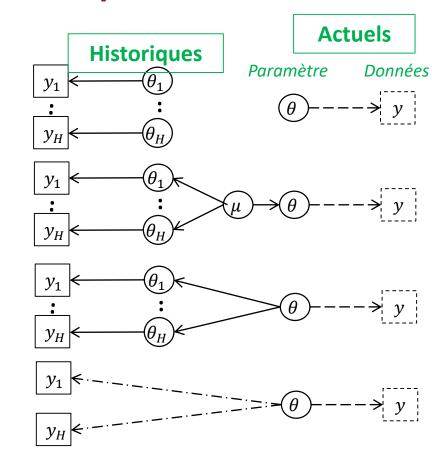
- Non pertinentes
- Interchangeables (exchangeable)
- Biaisées, potentiellement

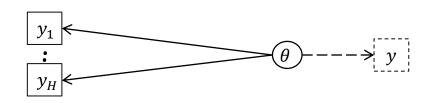




Les données historiques sont considérées :

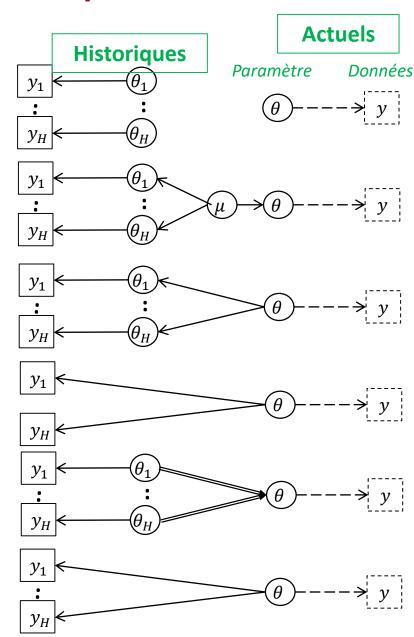
- Non pertinentes
- Interchangeables (exchangeable)
- Biaisées, potentiellement
- Identiques mais intégration dépréciée



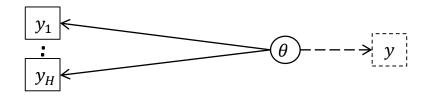


Les données historiques sont considérées :

- Non pertinentes
- Interchangeables (exchangeable)
- Biais
- Identiques mais intégration dépréciée
- Dépendance fonctionnelle
- Identiques



Cas le plus simple



 Les données historiques et les données actuelles sont considérées comme issues de la même distribution

Données individuelles:

- Analyse poolée : on regroupe les données en 1 unique jeu
- Analyse séquentielle: la distribution a posteriori des données historiques devient la distribution a priori pour l'analyse actuelle
- Données agrégées : définition d'une distribution a priori informative

Exemple – Données historiques individuelles comparables

- Données actuelles : n=20 , 6 réponses (y=6) et 14 échecs \rightarrow proportion observée=30%
- Données historiques: $n_h = 10$, 4 réponses $(y_h = 4)$ et 6 échecs

Exemple – Données historiques individuelles comparables

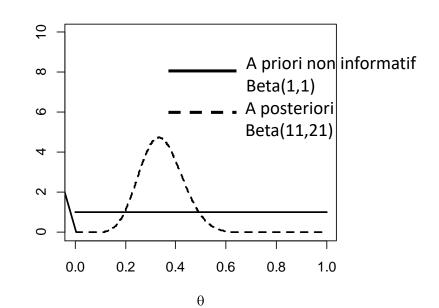
- Données actuelles : n=20 , 6 réponses (y=6) et 14 échecs \rightarrow proportion observée=30%
- Données historiques: $n_h = 10$, 4 réponses $(y_h = 4)$ et 6 échecs

Analyse poolée:

- Un seul échantillon $n + n_h = 30$, $y + y_h = 10$ réponses
- A priori non informatif, par ex. Beta (1,1)
- A posteriori :

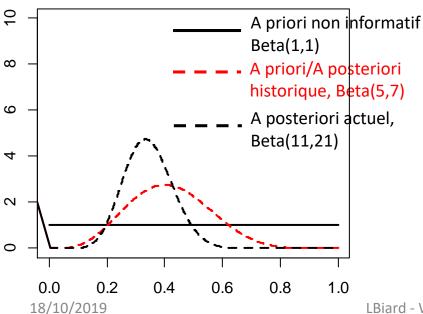
$$\theta | y \sim Beta (1 + 10, 1 + 20)$$

Soit $\theta | y \sim Beta$ (11, 21)



Exemple – Données historiques individuelles comparables

- Données actuelles : n=20 , 6 réponses (y=6) et 14 échecs \rightarrow proportion observée=30%
- Données historiques: $n_h = 10$, 4 réponses $(y_h = 4)$ et 6 échecs



θ

Analyse séquentielle:

- 1. Analyse historique, a priori non informatif: $\rightarrow \theta | y_h \sim Beta (1 + 4, 1 + 10 4)$
- 2. Analyse actuelle, *a priori* historique *Beta* (5,7)

$$\rightarrow \theta | y \sim Beta (5 + 6, 7 + 20 - 6)$$

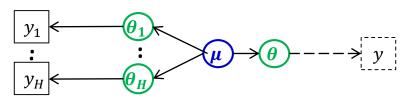
Soit $\theta | y \sim Beta$ (11, 21)

Données historiques agrégées, comparables

- Il peut exister différentes sources d'informations, différents avis et opinions, sans accès à des données historiques individuelles (articles, avis d'experts, etc.)
- Ces informations permettent de définir une distribution a priori $\pi(\theta)$ informative
- Comparer les résultats avec plusieurs distributions a priori * :
 - Référence: information minimale
 - La moins réaliste?
 - Référence pour les comparaisons avec les autres a priori
 - Clinique: expertise, précédentes études
 - Sceptique: large effet peu probable
 - Enthusiaste (souvent proche de l'a priori clinique)

^{*}Spiegelhalter, Freedman, Parmar. JRRS-A 1994;157(3):357-416

Modèles bayésiens hiérarchiques (BHM)



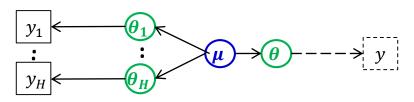
$$\theta, \theta_1, \dots, \theta_H \sim N(\mu, \tau^2)$$
 $\tau^2 = \text{hétérogénéité}$ inter-étude

 $\theta \mid y_1, ..., y_H$ = distribution a priori utilisée pour l'analyse actuelle = distribution prédictive de θ dans l'étude actuelle

Pour 1 jeu de données historiques *h*:

$$\pi(\theta|y, y_1, \dots, y_H) \propto L(y|\theta)N(\theta|\mu, \tau^2)L(y_h|\theta_h)N(\theta_h|\mu, \tau^2)\pi(\mu)\pi(\tau^2)$$

Modèles bayésiens hiérarchiques (BHM)



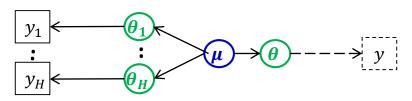
$$\theta, \theta_1, \dots, \theta_H \sim N(\mu, \tau^2)$$
 $\tau^2 = \text{hétérogénéité}$ inter-étude

 $\theta \mid y_1, \dots, y_H$ = distribution a priori utilisée pour l'analyse actuelle = distribution prédictive de θ dans l'étude actuelle

Pour 1 jeu de données historiques *h*:

$$\pi(\theta|y,y_1,...,y_H) \\ \propto L(y|\theta)N(\theta|\mu,\tau^2)L(y_h|\theta_h)N(\theta_h|\mu,\tau^2)\pi(\mu)\pi(\tau^2) \\ \text{Vraisemblance} \\ \text{données actuelles} \\ \text{données actuelles} \\ \end{array}$$

Modèles bayésiens hiérarchiques (BHM)



$$\theta, \theta_1, \dots, \theta_H \sim N(\mu, \tau^2)$$
 $\tau^2 = \text{hétérogénéité}$ inter-étude

 $\theta \mid y_1, ..., y_H =$ distribution a priori utilisée pour l'analyse actuelle =distribution prédictive de θ dans l'étude actuelle

Pour 1 jeu de données historiques *h*:

$$\pi(\theta|y,y_1,...,y_H)$$

$$\propto L(y|\theta)N(\theta|\mu,\tau^2)L(y_h|\theta_h)N(\theta_h|\mu,\tau^2)\pi(\mu)\pi(\tau^2)$$

Vraisemblance données actuelles

A priori historique

Meta-Analytical Approach: $\pi_{\theta,MAP}$ 25 Van Rosmalen et al. 2018

Peuvent être fixés ou

Méthode BHM robuste

 La distribution a priori est définie comme un mélange pondéré (weighted mixture)

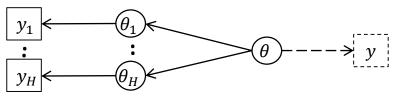
$$\pi_{\theta \ robuste} = (1 - w_r)\pi_{\theta,MAP} + w_r\pi_r$$

- Où π_r est une distribution a priori vague (non informative)
- Et w_r le poids de la composante robuste π_r

Biais potentiel – Méthode de Pocock

 On considère que les données historiques sont biaisées par rapport à la population d'intérêt actuelle

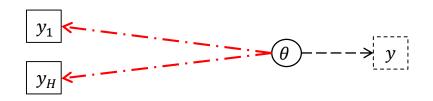
•
$$\theta_h = \theta + \delta_h$$



27

- Définition du biais, 3 options :
 - $-\,\,$ le biais δ_h est connu : paramètre fixe
 - le biais δ_h n'est pas connu : $\delta_h \sim N(0, \sigma_{\delta_h}^2)$
 - le sens du biais est connu : $\delta_h \sim N(\mu_\delta, \sigma_{\delta_h}^2)$
- $\sigma_{\delta_h}^2$ représente l'hétérogénéité inter-étude: fixée ou estimée (en fonction du nombre d'études historiques!)

Power prior



- On déprécie (discount) les données historiques (doute sur la comparabilité, suspicion d'hétérogénéité)
- Cela revient à considérer que $\theta_h = \theta$ mais on diminue l'influence des données historiques:

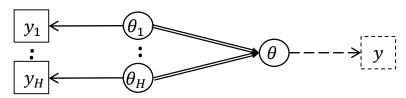
$$\pi(\theta|y, y_h, a) \propto L(y|\theta) L(y_h|\theta)^a \pi(\theta)$$

• $0 \le a \le 1$ = Paramètre puissance:

- Fixe (formule ci-dessus)
- Aléatoire

Power prior : a priori informatif intégrant les données historiques

Dépendance fonctionnelle



- Le paramètre d'intérêt θ peut être exprimé à partir des données historiques comme une fonction d'autres paramètres
- Par exemple des covariables (caractéristiques des patients):
 - Étude historiques réalisées avec des adultes, θ_1 , et des enfants, θ_2 , séparément
 - Etude actuelle mélangeant adulte et enfants avec prévalence p d'enfants:
 - \rightarrow Effet attendu: $\theta = (1 p)\theta_1 + p\theta_2$

Données historiques: Applications

Essais cliniques

- Recherche de dose : incorporation de données précliniques, autre population (adultes -> pédiatrie)¹
- Phase 2,3: information sur le groupe contrôle²
- Analyses séquentielles pour règle d'arrêt³
- Planification (probabilité de succès)⁴
- Méta-analyses séquentielles, en réseau⁵
- Etudes pronostiques, maladies rares⁶

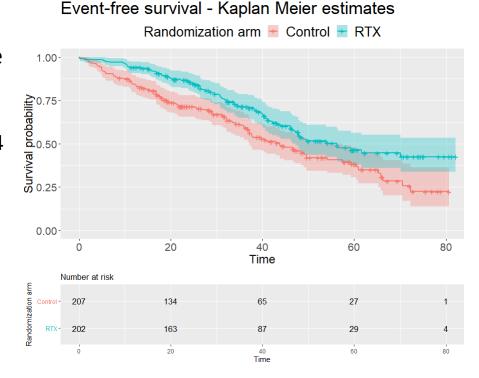
```
1 Zheng H et al. 2019
2 Viele K et al 2014; Van Rosmalen et al. 2018; Wandel S et al. 2017
3 Zhou H et al 2017; Ivanova et al 2015
4 Rufibach K et al. 2016
5 Higgins J et al. 2011, Friede T et al. 2015
```

⁶ Ibrahim et al. 2000; Van Dijkhuizen et al. 2018;

Exemple CLL7-SA*

 Objectif: Evaluer l'efficacité du rituximab (RTX) en traitement d'entretien de 2 ans, pour les patients âgés en 1^{ère} ligne de traitement d'une leucémie lymphoïde chronique (LLC)

- Multicentrique, randomisé RTX vs référence (observation)
- 409 patients randomisés, 06/2008- 08/2014
- Critère principal: Survie sans événement
- Analyse finale: HR=0,55 (IC95% 0,40-0,75), bénéfice du RTX



CLL7-SA Full dataset

^{*}Dartigeas et al. Lancet Haematol 2018

Données historiques

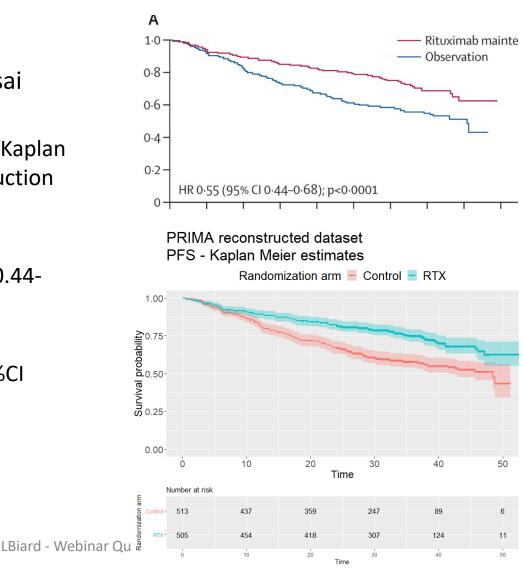
- Peu de données en 2008 au moment de la planification de l'essai CLL7-SA
- Publication en décembre 2010: essai PRIMA, entretien RTX dans le lymphome folliculaire*, maladie différente mais similitudes cliniques
- 518 patients randomisés, suivi médian=36 mois
- Critère principal: survie sans progression

Analyse finale: HR=0.55 (IC95% 0.44-0.68), bénéfice du RTX

Reconstitution du jeu de données historique

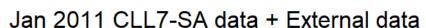
- Reconstitution d'un jeu de données cohérent avec l'essai PRIMA:
 - Utilisation des courbes de Kaplan
 Meier publiées + reconstruction
 des données censurées *
 - Original: HR=0.55 (IC95% 0.44-0.68)
 - → Reconstitué: HR=0.54 (95%CI 0.44;0.68)

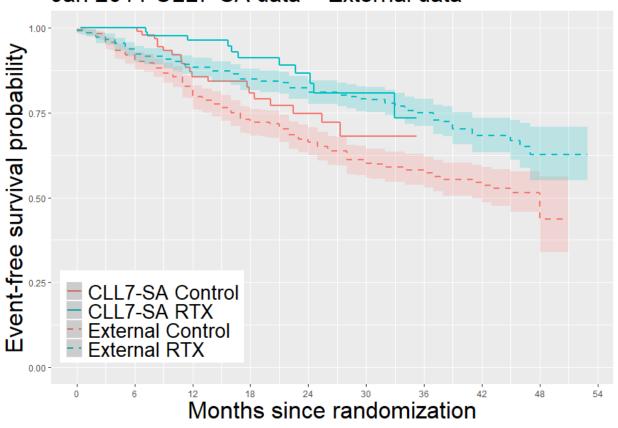
*Salles et al. Lancet 2011; Guyot et al. BMC Med Res Method 2012



Essai CCL7-SA: interim en janvier 2011 + Données historiques PRIMA

• 216/409 (53%) randomisés dans CLL7-SA

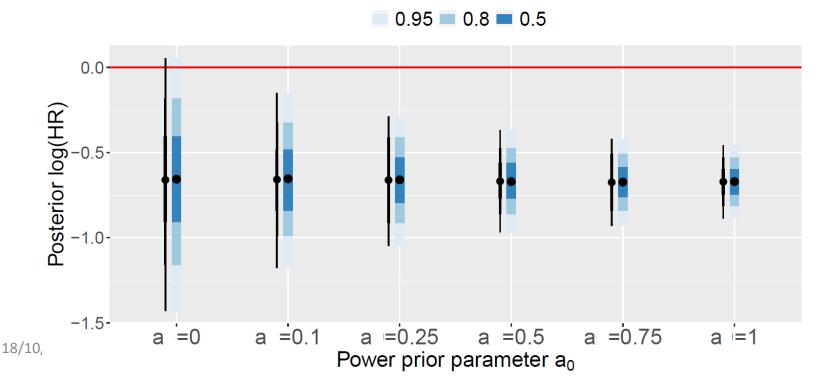




34

Analyse intermédiaire incorporant données PRIMA

- Modèle de survie à risques proportionnels
- Choix de la méthode :
 - Pathologie différente → power prior
 - 1 seul échantillon historique : paramètre puissance fixe a



En conclusion

- Les méthodes bayésiennes reposent sur l'incorporation de connaissances pré-existantes, ou encore externes, historiques
- Différentes approches en fonction des données disponibles, en termes quantitatifs et qualitatifs
- Les méthodes bayésiennes ont une interprétation intuitive, adaptés aux études d'épidémiologie clinique

Références

Dartigeas C, Van Den Neste E, Léger J et al. Rituximab maintenance versus observation following abbreviated induction with chemoimmunotherapy in elderly patients with previously untreated chronic lymphocytic leukaemia (CLL 2007 SA): an open-label, randomised phase 3 study. Lancet Haematol 2018;5(2):e82-e94

Gopnik A. Science 2012;337(6102):1623-7

Higgins JP, Whitehead A, Simmonds M. Sequential methods for random-effects meta-analysis, Statist Med 2011;30(9):903-21

Ibrahim JG, Chen MH, Power Prior Distributions for Regression Models Statistical Science 2000;15(1):46-60

Ibrahim JG, Chen MH, Gwon Y et al. The power prior: theory and applications. Statistics in Medicine. 2015;34(28):37243749

Ivanova A, Song G, Marchenko O, Moschos S. Monitoring rules for toxicity in Phase II oncology trials. Clin Invest (Lond.) 2015;5(4):373-81

Murray TA, Hobbs BP, Lystig TC, Carlin BP. Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data. Biometrics 2014;70(1):185-91

Salles G, Seymour JF, Offner F et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. The Lancet. 2011;377(9759):4251

Schmidli H, Gsteiger S, Roychoudhury S, et al. Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics 2014; 70: 1023–32

Spiegelhalter D, Abrams K, Myles J. Bayesian approaches to clinical trials and health-care evaluation, Wiley & Sons Ltd, Chichester UK, 2004

Erhardt E, Ursino M, Biewenga J et al. Bayesian knowledge integration for an in vitro-in vivo correlation model. Biom J 2019;61(5):1104-19

Petit C, Samson A, Morita S et al. Unified approach for extrapolation and bridging of adult information in early-phase dose-finding paediatric studies, SMMR 2018;27(6):1860-77

Van Rosmalen J, Dejardin D, Van Norden Y et al. Including historical data in the analysis of clinical trials: Is it worth the effort? SMMR 2018;27(10):3167-82

Zheng H, Hampson L, Wandel S. A robust Bayesian meta-analytic approach to incorporate animal data into phase I oncology trials, SMMR 2019

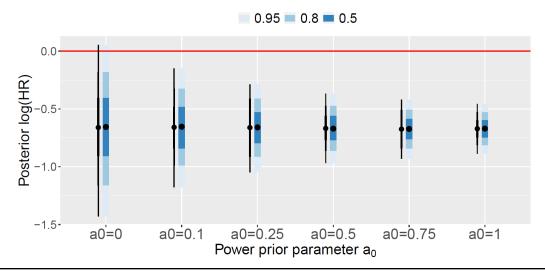
Zhou H, Lee JJ, Yuan Y. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints. Stat Med 2017;36(21):3302-14

Back up

Critères de Pocock, incorporation de données de groupes contrôles historiques dans les essais cliniques

- 1. Traitement de référence défini précisément et identique
- 2. Critères d'inclusion identiques, études récentes
- 3. Méthodes d'évaluation identiques
- 4. Distributions des caractéristiques des patients comparable entre les études
- 5. Mêmes centres, institutions, investigateurs
- 6. Pas d'autres raisons d'obtenir des résultats différents avec le traitement contrôle entre données historiques et actuelles

Résultats CLL7-SA interim+PRIMA



Méthode	Puissance	Pr(HR<1)	Pr(HR<0.8)	Pr(HR<0.6)
CLL7-SA seul	a=0	0.95	0.83	0.56
Power prior	a=0.1	0.99	0.93	0.60
	a=0.25	1	0.98	0.68
	a=0.50	1	0.99	0.74
	a=0.75	1	1	0.79
Pool	a=1	1	1	0.84