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....the ability to create surrogate versions of
real complex systems inside our computing
machines changes the way we do science. In
particular,emphasis will be laid upon the idea
that these so-called, “artificial worlds” play
the role of laboratories for complex systems,
laboratories that are completely analogous to
the more familiar laboratories that have been
used by physicists, biologists, and chemists
for centuries to understand the workings of
matter.

Because the ability to do controlled,
repeatable experiments is a necessary
precondition to the creation of a scientific
theory of anything, the argument will be made
that, for perhaps the first time in history, we
are now in a position to think realistically
about the creation of a theory of complex
systems.



Agent-based Models and Complexity

Agent-Based models that simulate the simultaneous operations and
interactions of multiple objects (atoms, molecules, agents) in an attempt to
re-create and predict the appearance of complex phenomena.

The process is one of emergence from the lower (micro) level of
systems to a higher (macro) level.

As such, a key notion is that simple behavioral
rules generate complex behavior.



http://en.wikipedia.org/wiki/Emergence
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The notion of Complexity: a simplistic! model of

Tumor Growth

A céll can take each time one of
e three states:

= T.DBlack, tumor cell 1
= 2:Green, healthy cell.
= 3:Red: micro vessel cell 5

The evolution rules are
the following: s

= Micro vessel on a site will invade to
nearest neighbors healthy cells at the
next time step with probability p.

= All cells with micro vessel will turn to
tumor at the next time step.

5/ fire42
3:

Cells with Micro vessel

at time't . — attimet+l
With probability
at cell (i, j)p At neighbor
cells
Cell with micro vessel Tumor
> Cell

At time t .
At time t+1



The notion of Complexity: simple behavioral rules
geperate complex behavior. Tumor growth
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20 years after....

A Big! number of available microscopic/ agent-based
models simulating the time evolution of Complex
Systems (Biological Systems, Material Science,
Complex Fluids, Epidemics, Neurons)

Micro-Scale Macro Emergent) Scale
Large-Scale 7 — ’En?

-9-
L

- l_--'*”)‘}. e Vcan-field
G (|, 1\ tS)

Microscopic
Models

Different time and space scales

Agent-Based :
J Macro scales much much bigger

Brownian D ) _ : ODE’s-PDE’s
Monte Carlo than the bigger Microscopic
scale
Molecular
Dynamics

The analysis is usually sought

Material Science
*Epidemiology
*Bio
*Neurons
 Markets

at this level (system-level analysis

.. but such good models not always exist
In closed form



Epidemics: One of the major challenges
nowdays

The surveillance, analysis and ultimately the efficient long-term prediction
and control of epidemic dynamics appear to be (the) major challenges
nowdays

.c Centers for Disease Control and Prevention
Il CDC 24/7: Saving Lives, Protecting People™

Cardiovascular diseases 16,733,000 (29%)

Infectious and

parasitic diseases 14,867,000 (26%)

Malignant neoplasms 7,121,000 (12%)

Violence/injuries/
accidents/suicides
Chronic lung
diseases

Pregnancy-related deaths

5,168,000 (9%)
3,702,000 (6%)

2,972,000 (5%)
2,398,000 (4%) worldwide

1:968.000 (3% Total deaths
1,112,000 (2%) 57,029,000

988,000 (2%)

Other
Digestive diseases
Neuropsychiatic disorders

Diabetes mellitus



Epidemics: One of the major challenges
nowdays

The surveillance, analysis and ultimately the efficient long-term prediction
and control of epidemic dynamics appear to be (the) major challenges

; nowdays

Influenza Pandemics
20th Century

Credit: US NationalMuseum of Healthand
Medicine

1918: “Spanish Flu” 1957: “Asian Flu” 1968: “Hong Kong Flu”
A(HTN1) A(H2N2) A(H3N2)
20-40 m deaths 1-4 m deaths 1-4 m deaths

675,000 US deaths 70,000 US deaths 34,000 US deaths



Epidemics: One of the major challenges
nowdays
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Epidemics arise: funding... declines...

CDC continues to work with reduced financial resources, which
similarly affects state, local, and insular area public health

FIGURE 2

NIH funding, FY 1950-2019
in thousands of constant 2013 BRDPI adjusted dollars

Public Health Emergency Preparedness (PHEP) Cooperative Agreement Funding'

O Figures in millions

$58,159,195
$60,000,000
$50,000,000 :_:Y ij(l)03
Pre-austerity growth trend —» pachg
level
$40,000,000 l
$30,000,000
$27,737,093
$20,000,000
FY 2010
fundina
$10,000,000 level
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Source: CDC, PHPR, Division of Stase and Local Readiness
Iheaehndlum!ﬂwﬂﬂed-lml)mwlkleﬂm mrm@.mmll s.wlummgm Flu s.wlanuu Source: NIH funding figures through FY 2014 are based on total budget authority, Projected NIH funding figures for FY 2015 through FY 2019

- Phase I, an Pae s Supplement - Phase il Funding, Th are based on data from the Congressional Budget Office.




Modelling Epidemics : the diffuculties

Modelling difficulties stem mainly from three reasons:

(a) the continuous and ever-lasting mutations of pathogens, particularly of
viruses

(b) the complexity in the disease host-pathogen and host-host transmission
mechanisms,

(c) the complexity in the structure of underlying social network,



Epidemic modelling: an overview

Siettos, C. I., Russo, L., 2013, Mathematical Modeling of Infectious Disease Dynamics: A Review, Virulence, 4 (4), 295-306.

Mathematical Modeling
of Infectious Disease Dynamics

Statistical-based methods Mathematical/Mechanistic Empirical/ Machine
For Epidemic Surveillance State-Space Models Learning-based Models

Spatial models

Stochastic models [V)\g igﬁﬁ?ﬁg
Continuum Markov Chain
Regression techniques Time Series techniques deterministic
Autoregressive models SIR models -
Surveillance
Networks
Agent-Based
Statistical Process Hidden Marko Complzoﬁgltgmorked Simulations
Control methods
Models

CUMSUM charts




An Agent-Based Simulator

the Models of Infectious Disease Agent Study (MIDAS), a network launched on
May, 1, 2004 and funded by the U.S. National Institutes of Health has as its
ilot effort the detailed modeling of the dynamics of a hypothetical flu pandemic

Epidemic model Epidemic model
Host-Host Host-Pathogen
Interactions Interactions

h)

|
Demographlc Aocent-based gh
Data g il
- Simulator Netwvork
J—

A

Hospital/
. D School Network T

Social
Network




What is done until now with Agent-Based Simulators

(A) Run in time:

running many scenarios with different initial conditions
and for long times to get the relative macroscopic
iInformation.

(B) Try to find Macroscopic equations in a closed form
-> Statistical Mechanics




What is done until now: an example for obtaining closures with the pencil

Example: The SIRS model for Epidemics.
Uge of stochastic dynamics on a lattice
more general graphs)

Description

A site x of a d-dimensional graph
can be:

S (healthy and susceptible) The rules:

ST 1 withrate An(X),

I (infected
( ) n(x) number of Infected Neighbors

(recovered, i.e., healthy and

immune). | —> R withrate o

R —— S withrate y



What is done until now: an example for obtaining closures with the pencil

Mathematical individual description of SIRS

N(x): Is the neighborhood
(nearest-neighbor sites) of a site X

P.(2 )} is the probability of having
a state a at site X at, a=S,I R

R(8) . is the joint probability to
have state a at site X and state b at
site Y.

Problem : Equations are, as is usual for moment equations,
not in a closed system.



What is done until now: an example for obtaining closures with the pencil

Problem : This leads to an infinite hierarchy.

To solve such a hierarchy, one usually resorts to some approximation-
reduction scheme, which expresses the higher-order moments in terms
of the lower-order ones and truncates the equations at some point.

To close the system and derive a set of autonomous equations we
approximate the triad joint probability

(a ! x) (ax,by)P(by,xW)

y? w
P(b,)
Assumption
Three adjacent sites can not form a triangular

Vv

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: Dynamical
properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics: Theory and
Experiment, 8, P08020.



Objective

Bridge the gap between micro (where
the information is available) and macro
scales (where the analysis is sought) I don’t know the coarse

Enable microscopic simulators ~ €quations, but I have a black

through a computational box agent-based simulator
superstructure to perform tasks
beyond simple simulation

u( x,t) u(x,t+7)
*Obtain coarse stable and unstable!!! — @O |—
steady state solutions from microscopic
simulator

Accelerate convergence of microscopic
simulator to the corresponding coarse

steady state Use the agent-based simulator

*Calculate “coarse” slow eigenvalues

and eigenvectors as an experiment!
-Design linear and nonlinear Identify coarse information
controllers : Nonlinear feedback on demand
linearization

«Deal with Rare Events

without having the equations!



THE CONCEPT: What else can I do with an integration code ?

Have Equations (PDE’s)

Write Simulation

u( x,t) u(x,t+7)

—> ¢T L

-Instead, use iterative linear algebra methods

(matrix-free methods)

Estimate
Also matrix-vector
D(x) ~ product
- CG, GMRES
D®-¢ !
X Matrix free = Arnoldi
D(x+g)” iterative linear Newton-Krylov
X+& algﬂbra

The World



Matrix-free methods: Arnoldi Eigensolver & GMRES

No need of “transparent” equations, just a black box code that will integrate

it.ovdr a step size that it has been chosen.

Yier = DY)+

Black-Box

YSTEM AROUND THE STEADY STATE

Code

GMRES SOLVE AX=B

0.5 -

0

0
4
|

0.9 0.925 0.95 0.975 1

ARNOLDI

Set g, with o, =1

For j=1,m
(1) Calculation  A(];

(2) Calculation | ht,j :<qu ,qt>,t =12,...,]

J
@ r; =Ag,—> h 0,
t=1

1/2
(4) hj+1,j :<rj ) rj>

6) Q. =1T;/h

End For

1]




Computational Methods for System-Level Analysis

...but there is no description
(in moments of distribution)
of the macroscopic behavior;

What if physics are known
In @ more detailed
(microscopic) level?

=

SIMPLE SIMULATION:

FINITE ELEMENTS

LIKE EXPERIMENTAL

EXPERIMENTS KRYLOV SUBSPACE

ARNOLDI-GMRES

I.e. run atomistic-based
models for

many agents and for
different parameters and

NEWTON/
(QUASI-NEWTON)

for long time to get

macroscopic (system-level) CONTROL
o .
HHOTIEOn OPTIMIZATION
AlM: systematically bridge the gap But good macroscopic models do
between Mic ro-scopic and not always exist in closed form ....

Macro-scopic (system-level) World



An Equation-Free Approach

.... or else .... How to find solutions without the equations

[Kevrekidis et al., Comm. Math. Sciences, 1, 715-762, 2003;
Siettos, Gear and Kevrekidis, EPL, EPL, 99, 48007, 2012]

Bifurcation Parameter
Results
Coarse Bifurcation Code [*
Matrix-free based Averaging in time
v and/or space and or nr.
coarse I1C PDE-based - r_\ . E)f_reflliiafions and filtering
Timestepper !
I
, .
. Restrict
r lllll I r lllll I !
n - - n I
| | o W
Microsgapic}
Large Scale Agent-Based
, Simulator
r n _[C L n




The Assumption: Time Scale Separation of Distributions and
Moments

Macroscopic models exist (but the problem is too complex & we cant’derive them)
andl close for the expected behaviour of a few low moments of the evolving distributions

0 0 0 0 A

(0] Q 0
o -2 o0 0 p(v)
0 00 o 0 7/.\
o° ° 4 0, / \
o 0" 0 0 0 _K _
o ©° 0 0 7— \
o 0] 0 o 0 \
oo 9 o 0 0
Descriptions

@ Detailed: v, for each variables

@ Moments

m, Zeroth moment: density p I p(v)dv

m, First moment: momentum pv I p(v)vdv

l Time scale m, Second moment

separation
m Third Moment



SLOW & FAST DYNAMICS

dp
 — f(p,
" (P, 0)

dq 1
dt - e g(p!q)

’ ' ¢ small=>» g(p,Aq)zo }
Po p q=q(p)

Sosoon p=f(p,q)~ f(p,4()=f(P) Singular perturbed systems



Motivation/Scope

v" Introduce methods for analysing the EMERGENT DYNAMICS of detailed Agent-
based evolving on complex networks (BIFURCATION ANALYSIS, STABILITY...)

v'Introduce methods for tuning topological characteristics of contact transmission
networks to get closer to the structure of real-world observations.

v'Explore the effects of the network topology on the Emergent Dynamics of
Agent-Based Epidemic Models.

v'Examine how graph-base intervention policies can be introduced along with the
use of the network topological characteristics (CONTROL DESIGN)

USING THE AGENT-BASED SIMULATOR AS EXPERIMENT, THUS
BYPASSING THE NEED FOR DERIVING ANY MACROSCOPIC MODEL IN A
CLOSED FORM



The Problems

1. Comparison between closed

Models and Equation-Free ,7
7

N

Computations

3. Forecasting 2014 Ebola
Epidemics

The worst ebola outbreak
in history

P> Principal ebola outbreaks

Cases @ Deaths

280 151 254 45 224 97 128 187
1976 1995 1996 2000 200102 2003 2007

Zaire*, Sudan Zaire  Gabon Uganda gabon Congo D.R.Congo
ongo

28,637

2. Exploring the effects of the
Network Topology on the
Emergent Dynamics of
Agent-Based Epidemic Models.
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# 4 P .:‘"; } X
Rt 'I.'/,", s \‘; &
g l/l\”‘.!" b //_‘@V\ 7
S7aNy: g X
e Sw

%
J
NS



1. The Epidemic model: The Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments:
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.

Rule #1: An mfected individual //]infects a susceptible (5) nelghbor with a probablllty
Psoi = if an active link exists between them ' - -

BT 8

Rule #2: An infected (7)individual recovers 0.2}
with a probability p, s =0

Rule #3: A recovered individual becomes susceptible
with a probability Pr_s =7

™
o

Contact transmission 0 53 Y o3
Network:

Erd6s—Rényi

density of infected individuals




1. The Epidemic model: the Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments:
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:

Theory and Experiment, 8, P08020.

Mean Field
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1. The Epidemic model: the Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments:
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:

Theory and Experiment, 8, P08020.

Ursell Expansion (pairwise)

Fo(5:, 8y, Tw) = BiS:) B 5y, L) + Pl )P (S:, 5y) — F(S: ) Fe(S5y) Pl le)
Fi(lw, Sz, 1y) = 2R (1. )F(S:, Iy) — Bl Fi(S:) F(1y)

Py(lu, 5., Ry) = Pi(R., Sy, 1) = P(L.)Pi(Se, By) + P(Ry)Py(I, 5.)

— |

% Az[ST] — 8]
A s -
d'i‘rﬂ 81S1] + ~([R] — [RI] — 2[SR]) — (= — 1)
< M(I][SR) + [RIST) — (NRI(1 — [1] - [R])
# —(26 + )[RI] + &([1] — [ST))
| - (= DXDSR) + [RIIST) - [1RI(1 — (1] - [R))
% V[RI = (A + 8)[ST] + (= — DA(SI(1 = [I] - [R]) + [I]

x (1—[I] - [R] — [SR] — [SI]) — [1](1 — [I] — [R))*)
— (2 = DAQIIST] - [I7"(1 — [1] - [R])).



1. The Epidemic model: the Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments:

Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.

Bethe-type Ansatz (pairwise)

Fi(Sz, 5y, 1) = Pl S:) Bl 5y, 1)
Fillyw, Sz, 1) = B(I, ) Fi( 1, 5;)
F(l,., 5., R,)) = PR, F(I,, 5;)
BB, 5, 1) = F( R )P 5, I, ).

df] _ x5 -

iR

~5r — = 7lA]

—dliﬁ 8|ST| +~([R] — |[RI| — 2[SR]) — (= — 1)A([R][S1])

d[RI|

di
d[S1|

dt

—(2d + ~)|RI| + a(|I) — |51]) + (= — 1)A(|E||5T])

~[RI| — (A + &[SI + (2 — VA[SI|(1 — [R] — 2[1]).



1. Closures vs Equation-Free/Bifurcation Diagram

01 Mean-field, Kirkwood, Ursell
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2. Epidemics: The importance of Network
Topology: the clustering coefficient and path

Christakis N., Fowler J., Social Network Sensors for Early
Detection of Contagious Outbreaks, PLOSONE 5(9) 2010.

length: strong and weak links

A real network of students in the
University of Harvard which is used to
examine the progress of a disease
(Christakis & Fowler, 2010).

Node A is a central node with 6 friends
around him was more likely to get
infected sooner because of its shortest
path length from other individuals in
the network (e.g. B & C)

Nodes B and C: although they have the
same number of connections, they
have different clustering coefficients

with node C being more likely to get
infected earlier in the epidemic.



2. The importance of Network Topology

Contact transmission Network:
Watts and Strogatz Small World

Small-world network
constructed with p=0.1

density of susceptible

0.45

0.4}

0.35f

0 200 400 600 800 1000

time

Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

O

Increasingly random connectivity

small-world network
constructed with p=0.3

density of susceptible
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Coarse-grained Bifurcation diagram w.r.t theAPL

Reppas, A.I., Spiliotis, K.G., Siettos, C.I., 2015, Tuning the Average Path Length of Complex Networks and its
Influence to the Emergent Dynamics of the Majority-Rule Model, Mathematics and Computers in Simulation,
109, 186-196.

density of infected

« We started with small-world 03 o L L L L
networks constructed with a rewiring *
probability =0.25 i ) .

0.26+ o

0

*Adjust the Average Path Length
(APL); Degree and Clustering 0221 reirrsr s
distributions are kept constant

0.18+ . o®
*Equation-Free approach to trace the I 0 © o *
unstable branch 9 : : ; : :

6.4 6.6 6.8 ! 12 14 1.6



Hemorrhagic Fever with Renal Syndrome in Chenzhou, China

50 - mm Observed cases — ====Fijtted cases  +++++++ predicted cases

0.35(

No. of cases

| | I | L
WMIOOWD WMDY WY = = = M= 92 2 o8 0 o o o o o o o =
1 T T ETeC e e e S TE T
@ = & O 8 = o 0 & = @9 0 8 = o 9 8 = o 9
Time

Xiao H, Tian H-Y, Gao L-D, Liu H-N, et al. (2014) Animal Reservoir, Natural and Socioeconomic Variations and the
Transmission of Hemorrhagic Fever with Renal Syndrome in Chenzhou, China, 2006—2010. PLoS Negl Trop Dis 8(1):

€2615. doi:10. 1371/]ournal pntd 0002615
' -OF ' . PLOS | NEGLECTED
: TROPICAL DISEASES



http://www.plosntd.org/article/info:doi/10.1371/journal.pntd.0002615

3. Forecasting the EBOLA 2014-2015 Epidemics
in West -Africa

The worst Ebola Virus Disease (EVD) epidemic in history ravaged
West Africa.

- The epidemic began with the report of 49 cases and 29 deaths in Guinea on
March 22, 2014.

- Liberia reported its first laboratory-confirmed cases on March 30, 2014,

- the first cases in Sierra Leone were reported on May 28, 2014.

- the virus crossed the local porous international borders, establishing
chains of transmission not just in small villages, where it would have been
easier to contain it, but also in large urban centers.

- Insufficient public health infrastructure, poor sanitation conditions, and
unsafe traditional burial practices were the main reasons to the spread of
the epidemic in the region.

According to the WHO only the total death toll exceeded 17000 people.



The map of the Epidemic

The worst ebola outbreak
in history

P Principal ebola outbreaks

28,637

Cases @ Deaths

280 151 254 224 128 187
1976 1995 1996 2000 2001/02 2003 2007

Zaire*, Sudan Zaire  Gabon Uganda Gabon Congo D.R.Congo Guinea, Liberia, Slerra Leone

Congo Nigeria, Mali, Senegal
e J
L | g =
] 1 5 R
99%
of cases

Source: WHO, on Jan 3 *Now D.R. Congo Scale changed for 2014-2015 period A



Mathematical Models: the Ebola
Epidemic

Both deterministic and stochastic SEIR dynamic models have been used to
study the 1995 and 2000 Ebola outbreaks in DR Congo and Uganda, which
were caused by the Zaire and Sudan virus strains, correspondingly (e.g.
Chowell et al., 2004; Lecone and Finkenstadt, 2006).

Legrand et al. (2007), analyzed data from these two epidemics with a sixth-
order stochastic compartmental model that incorporated explicitly the
settings of transmission in the community, in the hospital and during
traditional burial ceremonies.

For the current Ebola outbreak in West Africa, Rivers et al. (2014) utilized
the model proposed by Legrand (2007) to approximate and forecast the
evolution of the spread in Liberia and Sierra Leone. Their model forecasted a
continuously increasing epidemic until December 31, 2014, with medians of
117,877 and 30,611 cases for Liberia and Sierra Leone, respectively.



3. Forecasting the EBOLA 2014-2015 Epidemics
iIn West -Africa

rs such as:

Incubation period, recovery period, time to death,

Per- Contact transmission probability (the most difficult to
predict just from clinical studies)

- Reproductive number — number of secondary infected from an
Infectious!!!

- Age-Specific distributions (age-structured parameters)

- Topological characteristics of the underlying transmission network
IS of outmost importance,



MiallcinatiCal MoOducis. Uic cDOia
Epidemic

- Althaus (2014) used a deterministic SEIR dynamic model to estimate
two vital epidemiological parameters for any infection, describing the
spread of EBOV in West African countries, in this case: the basic and
the effective reproduction numbers, R, and R,

- A compartmental stochastic, individual-based model employed by
Gomes et al. (2014) to approximate the dynamics of the Ebola
outbreak worldwide at an early period of the outbreak, estimated a
rapid increase of the cases in African countries, and a potential
international threat on a longer time-scale.

- Kiskowski (2014) combined a stochastic SEIR model with a three-scale
community network model representing contacts between households
and local communities, to demonstrate that the different regional
trends of the early growth dynamics of the 2014 EBOV epidemic in
Guinea, Sierra Leone and Liberia might be explained by disparate local
community mixing rates.



Mathematical Models: Our contribution

Computer model predicted when the Ebola outbreak in Liberia would
fade out

Last updated: Monday 16 March 2015 at 2am PST
Ebola Adapted media release

Infectious Diseases / Bacteria / Viruses

A novel mathematical approach applied to model the ongoing Ebola outbreak, predicted the current fade out of the
epidemic in Liberia almost to the exact date (early March). Using World Health Organization (WHOQ) data through
December 21, 2014, the study that was published online in PLoS Currents Outbreaks, was the first to provide an accurate
prediction for the epidemic containment.



i What's new

Siettos, C., Anastassopoulou, C., Russo, L., Grigoras, C., Mylonakis, E., 2015, Modeling the
2014 Ebola Virus Epidemic — Agent-Based Simulations, Temporal Analysis and Future
Predictions for Liberia and Sierra Leone. PLOS Currents, 2015 Mar 9.

and also

Siettos, C., Anastassopoulou, C., Russo, L., Grigoras, C., Mylonakis, E., 2016, Modeling,
Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD) Epidemic in
Sierra Leone Using Small-World Networked Model Simulations, BMJ Open, 6, e008649

Integrating Agent-Based modeling on complex networks and the so-
called Equation-Free approach (multiscale bridging)

which allowed us to assess various important epidemiologic
parameters including the evolution of the underlying transmission
network



Model and Methodology in a Nutshell

Number of Agents = Population ~0(4-6 millions)
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Forecasting the Evolution of EBOLA
Epidemics: the case of Liberia and Sierra
Leone

» Time series of the official case counts from the World Health
Organization were used for model fitting (CDC, 2014).

« Case data, which included cumulative incidence and cumulative
deaths by date of report for Liberia and Sierra Leone retrieved on 5t
of January, were found on Wikipedia (2015) and compiled from
WHO case reports

« Simulations were performed using May 27, 2014 as an initial date
and a time horizon of 70 days (10 weeks) with an equal sliding
window time interval; the last date was December 21, 2014.



Cumulative Cases

RESULTS
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Conclusions

We propose an approach bridging state-of-the-art Agent-
Based Models and Numerical Analysis/ Control Techniques
for the risk assessment and forecasting of Emerging
Infectious Dynamics

-We have successfully forecasted the evolution of the Epidemic in Liberia
and Sierra Leone, ahead of time (a time horizon of 3 months)

- Usefulness of Would-Be Worlds/ Mathematical models should not be
overestimated.

-Despite the significant technological progress and
concentrated wealth, breakdowns and cuts in public
health infrastructures worldwide are (the) major
reasons for boosting epidemics.



We should be on our guard not to
overestimate science and scientific
methods when it is a question of human
problems, and we should not assume that
experts are the only ones who have the
right to express themselves on questions
affecting the organization of society.

— Albert Einstein —
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On one hand....
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On the other hand....

\N% Wealth-X Billionaire Census
WEALTH-X 2015-16
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The Global Wealth Pyramid

CREDIT SUISSE
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Databook 2016



Thank you!

HMMM... WE HAVE
MORE IN COMMON
THAN | THOUGHT...
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