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....the ability to create surrogate versions of 

real complex systems inside our computing 

machines changes the way we do science. In 

particular, emphasis will be laid upon the idea 

that these so-called, “artificial worlds” play 

the role of laboratories for complex systems, 

laboratories that are completely analogous to 

the more familiar laboratories that have been 

used by physicists, biologists, and chemists 

for centuries to understand the workings of 

matter. 

Because the ability to do controlled, 

repeatable experiments is a necessary 

precondition to the creation of a scientific 

theory of anything, the argument will be made 

that, for perhaps the first time in history, we 

are now in a position to think realistically 

about the creation of a theory of complex 

systems. 



Agent-based Models and Complexity

Agent-Based models that simulate the simultaneous operations and 
interactions of multiple objects (atoms, molecules, agents) in an attempt to 
re-create and predict the appearance of complex phenomena. 

The process is one of emergence from the lower (micro) level of 
systems to a higher (macro) level. 

As such, a key notion is that simple behavioral 
rules generate complex behavior. 

http://en.wikipedia.org/wiki/Emergence


Complex vs. Complicated

Collective patterns emerging from 
many interacting components,

…decomposing the system and 
analyzing subunits does not 
necessarily give us an idea of the 
behavior as a whole

…the behavior of complex systems 
is therefore unpredictable

…subunits are designed and 
connected so that they 
accomplish a pre-determined 
(predictable) function

The emergent dynamics is more 
than the sum of the properties of 
the individual units



A cell can take each time one of 
the three states:

 1:Black, tumor cell

 2:Green, healthy cell.

 3:Red: micro vessel cell

The evolution rules are 

the following:

 Micro vessel on a site will invade to 
nearest neighbors healthy cells at the 
next time step with probability p.

 All  cells with micro vessel will turn to 
tumor at the next time step.

at time t+1

At neighbor 

cells

With probability 

p

Cells with Micro vessel

at time t

at cell (i, j)

Cell with micro vessel

At time t
At time t+1

Tumor

Cell

The notion of Complexity: a simplistic! model of 
Tumor Growth



Probability of Spreading: 44% Probability of Spreading: 46%

The notion of Complexity: simple behavioral rules 

generate complex behavior. Tumor growth



20 years after.... 
A Big! number of available microscopic/ agent-based 
models simulating the time evolution of Complex 
Systems (Biological Systems, Material Science, 
Complex Fluids, Epidemics, Neurons)
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The analysis is usually sought

at this level (system-level analysis)

… but such good models not always exist

in closed form

Brownian D



Epidemics: One of the major challenges 
nowdays

The surveillance, analysis and ultimately the efficient long-term prediction 
and control of epidemic dynamics appear to be (the) major challenges
nowdays

worldwide
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Epidemics arise: funding… declines…

CDC continues to work with reduced financial resources, which 
similarly affects state, local, and insular area public health 
departments



Modelling Epidemics : the diffuculties

Modelling difficulties stem mainly from three reasons: 

(a) the continuous and ever-lasting mutations of pathogens, particularly of 
viruses

(b) the complexity in the disease host-pathogen and host-host transmission 
mechanisms, 

(c) the complexity in the structure of underlying social network, 



Epidemic modelling: an overview

Mathematical Modeling

of Infectious Disease Dynamics

Statistical-based methods

For Epidemic Surveillance

Regression techniques
Time Series techniques

Autoregressive models

Cumulative Sum 

(CUMSUM) charts 

Statistical Process 

Control methods 

CUMSUM charts 

Hidden Markov 

Models 

Spatial models 

Mathematical/Mechanistic

State-Space Models

Continuum 

deterministic 

SIR models

Stochastic models

Markov Chain 

Cumulative Sum 

(CUMSUM) charts 

Complex Networked

Models

Agent-Based 

Simulations

Empirical/ Machine 

Learning-based Models 

Web-Based

Web-Based 

Data Mining

Surveillance 

Networks

Siettos, C. I., Russo, L., 2013, Mathematical Modeling of Infectious Disease Dynamics: A Review, Virulence, 4 (4), 295-306.



An Agent-Based Simulator 

the Models of Infectious Disease Agent Study (MIDAS), a network launched on 
May, 1, 2004 and funded by the U.S. National Institutes of Health has as its 
pilot effort the detailed modeling of the dynamics of a hypothetical flu pandemic



What is done until now with Agent-Based Simulators

(A) Run in time: 

running many scenarios with different initial conditions 

and for long times to get the relative macroscopic 

information. 

(B) Try to find Macroscopic equations in a closed form 

 Statistical Mechanics



Description
A site x of a d-dimensional  graph 
can be:

S (healthy and susceptible)

I (infected)

R (recovered, i.e., healthy and 
immune). 

What is done until now: an example for obtaining closures with the pencil

Example:  The SIRS   model for Epidemics. 

Use of stochastic dynamics on a lattice 

(or more general graphs)

The rules:

S I    with rate   λ η(x),  

η(x) number of  Infected Neighbors

I R with rate  δ

R S with rate γ



What is done until now: an example for obtaining closures with the pencil

Mathematical  individual  description of  SIRS
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Problem : Equations are, as is usual for moment equations,

not in a closed system.

N(x) : Is the neighborhood 

(nearest-neighbor sites) of a site x

:  is the probability of  having 

a state a at site x at, a=S,I,R

:  is the joint probability to 

have state a at site x and state b at 

site y.

 t xP a

 ,t x yP a b
 1 



What is done until now: an example for obtaining closures with the pencil

To close the system and derive a set of autonomous equations we 

approximate the triad joint probability

 
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 

, ,
, ,

x y y w

x y w

y

P a b P b x
P a b x

P b
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Assumption

Three adjacent sites can not form a triangular

To solve such a hierarchy, one usually resorts to some approximation-

reduction scheme, which expresses the higher-order moments in terms

of the lower-order ones and truncates the equations at some point.

Problem : This leads  to an infinite hierarchy.

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: Dynamical 
properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics: Theory and 
Experiment, 8, P08020.



Bridge the gap between micro (where 
the information is available) and macro 
scales (where the analysis is sought)

Enable microscopic simulators 
through a computational 
superstructure to perform tasks 
beyond simple simulation

•Obtain coarse stable and unstable!!! 
steady state solutions from microscopic 
simulator 

•Accelerate convergence of microscopic 
simulator to the corresponding coarse 
steady state

•Calculate “coarse” slow eigenvalues 
and eigenvectors

•Design linear and nonlinear
controllers : Nonlinear feedback 
linearization

•Deal with Rare Events

without having the equations!

Objective

I don’t know the coarse 

equations, but I have a black 

box agent-based simulator

Use the agent-based simulator 

as an experiment!

Identify coarse information

on demand


),( txu),( txu



Have Equations  (PDE’s)


),( txu),( txu

Jacobian too big to apply direct 

solvers 

(e.g. Newton-Raphson, Jacobi)

-Instead, use iterative linear algebra methods  

(matrix-free methods)

Large-Scale Systems

x

)(xΦ

)( εxΦ 

Also

εΦ  D

Estimate

matrix-vector 

product

Matrix free

iterative linear 

algebra

The World

CG, GMRES

Arnoldi

Newton-Krylov

THE CONCEPT:   What else can I do with an integration code ?

Write Simulation 
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Black-Box

Code

Matrix-free methods: Arnoldi Eigensolver & GMRES

In step m the algorithm creates an orthogonal basis in

Krylov subspace Κm
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No need of “transparent” equations,  just a black box code that will integrate 

it over a step size that it has been chosen.

GMRES SOLVE AX=B
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SIMPLE SIMULATION:
LIKE EXPERIMENTAL
EXPERIMENTS

OPTIMIZATION

FINITE ELEMENTS

KRYLOV SUBSPACE

ARNOLDI-GMRES

ΝEWTON/ 
(QUASI-NEWTON)

What if physics are known

in a more detailed 

(microscopic) level? 

…but there is no description

(in moments of distribution) 

of the macroscopic behavior;

Computational Methods for System-Level Analysis

But good macroscopic models do 

not always exist in closed form ….

i.e. run atomistic-based 

models for 

many agents and for 

different parameters and  

for long time to get 

macroscopic (system-level) 

information

AIM: Systematically bridge the gap 

between Micro-scopic and 

Macro-scopic (system-level) World

CONTROL



Bifurcation
Results

Coarse Bifurcation Code

Matrix-free based

Parameter

coarse IC PDE-based

Timestepper

Agent-Based

Simulator

Microscopic/ 

Large Scale

IC’s
…

…

An Equation-Free Approach

…. or else …. How to find solutions without the equations

{
Lift

}

Averaging in time

and/or space and or nr. 

of realizations and filtering

Restrict

look Ma!

no equations!

[Kevrekidis et al., Comm. Math. Sciences, 1, 715-762, 2003;

Siettos, Gear and Kevrekidis, EPL, EPL, 99, 48007, 2012]



The Assumption: Time Scale Separation of Distributions and 
Moments

Descriptions

1. Detailed: vi for each variables

2. Moments

Zeroth moment: density ρ

First moment: momentum  ρv

Second moment

Third Momentm

3

m2

m1

m0

………….

v

p(v)

 vdvvp )(

 dvvp )(

Time scale 

separation

Macroscopic models exist (but the problem is too complex & we cant’derive them)

and close for the expected behaviour of a few low moments of the evolving distributions
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Singular perturbed systems



Motivation/Scope

 Introduce methods for analysing the EMERGENT DYNAMICS of detailed Agent-
based evolving on complex networks (BIFURCATION ANALYSIS, STABILITY…)

Introduce methods for tuning topological characteristics of contact transmission 
networks to get closer to the structure of real-world observations.

Explore the effects of the network topology on the Emergent Dynamics of   
Agent-Based Epidemic Models.

Examine how graph-base intervention policies can be introduced along with the 
use of the network topological characteristics (CONTROL DESIGN)

USING THE AGENT-BASED SIMULATOR AS EXPERIMENT, THUS 
BYPASSING THE NEED FOR DERIVING ANY MACROSCOPIC MODEL IN A 
CLOSED FORM



2. Exploring the effects of the 
Network Topology on the 
Emergent Dynamics of   
Agent-Based Epidemic Models.

The Problems

1. Comparison between closed 
Models and Equation-Free 
Computations

3. Forecasting 2014 Ebola 
Epidemics



1. The Epidemic model: The Efficiency of Closures

S I
p 




Rule #1: An infected individual [I] infects a susceptible (S) neighbor with a probability 

if an active link exists between them.

Rule #2: An infected (I) individual recovers 

with a probability 

Rule #3: A recovered individual becomes susceptible 

with a probability R S
p 




I R
p 




Contact transmission 
Network:  
Erdős–Rényi 

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: 
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.



1. The Epidemic model: the Efficiency of Closures

Mean Field

Kirkwood (pairwise)

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: 
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.



1. The Epidemic model: the Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: 
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.

Ursell Expansion (pairwise)



1. The Epidemic model: the Efficiency of Closures

Reppas, A., De Decker Y., Siettos, C.I., 2012, On the Efficiency of the Equation-Free Closure of Statistical Moments: 
Dynamical properties of a Stochastic Epidemic Model on Erdos-Renyi networks, Journal of Statistical Mechanics:
Theory and Experiment, 8, P08020.

Bethe-type Ansatz (pairwise)
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2. Epidemics: The importance of Network 

Topology: the clustering coefficient and path 
length: strong and weak links

A real network of students in the 
University of Harvard which is used to 
examine the progress of a disease 
(Christakis & Fowler, 2010). 

Node A is a central node with 6 friends 
around him was more likely to get 
infected sooner because of its shortest 
path length from other individuals in 
the network (e.g. B & C) 

Nodes B and C: although they have the 
same number of connections, they 
have different clustering coefficients 

with node C being more likely to get 
infected earlier in the epidemic.   

Christakis N., Fowler J., Social Network Sensors for Early 
Detection of Contagious Outbreaks, PLoSONE 5(9) 2010.
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Coarse-grained Bifurcation diagram w.r.t theAPL

6.4 6.6 6.8 7 7.2 7.4 7.6

0.18
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0.3

APL

density of infected
• We started with small-world 
networks constructed with a rewiring 
probability=0.25

•Adjust the Average Path Length 
(APL); Degree and Clustering 
distributions are kept constant

•Equation-Free approach to trace the 
unstable branch

Reppas, A.I., Spiliotis, K.G., Siettos, C.I., 2015, Tuning the Average Path Length of Complex Networks and its 
Influence to the Emergent Dynamics of the Majority-Rule Model, Mathematics and Computers in Simulation, 
109, 186-196.



Hemorrhagic Fever with Renal Syndrome in Chenzhou, China

Xiao H, Tian H-Y, Gao L-D, Liu H-N, et al. (2014) Animal Reservoir, Natural and Socioeconomic Variations and the 
Transmission of Hemorrhagic Fever with Renal Syndrome in Chenzhou, China, 2006–2010. PLoS Negl Trop Dis 8(1): 
e2615. doi:10.1371/journal.pntd.0002615
http://www.plosntd.org/article/info:doi/10.1371/journal.pntd.0002615
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http://www.plosntd.org/article/info:doi/10.1371/journal.pntd.0002615


3. Forecasting the EBOLA 2014-2015 Epidemics 
in West -Africa

The worst Ebola Virus Disease (EVD) epidemic in history ravaged

West Africa.

- The epidemic began with the report of 49 cases and 29 deaths in Guinea on

March 22, 2014.

- Liberia reported its first laboratory-confirmed cases on March 30, 2014,

- the first cases in Sierra Leone were reported on May 28, 2014.

- the virus crossed the local porous international borders, establishing

chains of transmission not just in small villages, where it would have been

easier to contain it, but also in large urban centers.

- Insufficient public health infrastructure, poor sanitation conditions, and

unsafe traditional burial practices were the main reasons to the spread of

the epidemic in the region.

According to the WHO only the total death toll exceeded 17000 people.



The map of the Epidemic



Mathematical Models: the Ebola 
Epidemic

- Both deterministic and stochastic SEIR dynamic models have been used to 
study the 1995 and 2000 Ebola outbreaks in DR Congo and Uganda, which 
were caused by the Zaire and Sudan virus strains, correspondingly (e.g. 
Chowell et al., 2004; Lecone and Finkenstädt, 2006). 

- Legrand et al. (2007), analyzed data from these two epidemics with a sixth-
order stochastic compartmental model that incorporated explicitly the 
settings of transmission in the community, in the hospital and during 
traditional burial ceremonies. 

- For the current Ebola outbreak in West Africa, Rivers et al. (2014) utilized 
the model proposed by Legrand (2007) to approximate and forecast the 
evolution of the spread in Liberia and Sierra Leone. Their model forecasted a 
continuously increasing epidemic until December 31, 2014, with medians of 
117,877 and 30,611 cases for Liberia and Sierra Leone, respectively. 



3. Forecasting the EBOLA 2014-2015 Epidemics 
in West -Africa

Factors such as:

- Incubation period, recovery period, time to death,

- Per- Contact transmission probability (the most difficult to 

predict just from clinical studies)

- Reproductive number – number of secondary infected from an 

infectious!!!

- Age-Specific distributions (age-structured parameters)

- Topological characteristics of the underlying transmission network 

is of outmost importance, 



Mathematical Models: the Ebola 
Epidemic

- Althaus (2014) used a deterministic SEIR dynamic model to estimate 
two vital epidemiological parameters for any infection, describing the 
spread of EBOV in West African countries, in this case: the basic and 
the effective reproduction numbers, R0 and Re

- A compartmental stochastic, individual-based model employed by 
Gomes et al. (2014) to approximate the dynamics of the Ebola 
outbreak worldwide at an early period of the outbreak, estimated a 
rapid increase of the cases in African countries, and a potential 
international threat on a longer time-scale. 

- Kiskowski (2014) combined a stochastic SEIR model with a three-scale 
community network model representing contacts between households 
and local communities, to demonstrate that the different regional 
trends of the early growth dynamics of the 2014 EBOV epidemic in 
Guinea, Sierra Leone and Liberia might be explained by disparate local 
community mixing rates. 



Mathematical Models: Our contribution



What’s new

Integrating Agent-Based modeling on complex networks and the so-
called Equation-Free approach (multiscale bridging)
which allowed us to assess various important epidemiologic 
parameters   including the evolution of the underlying transmission 
network

Siettos, C., Anastassopoulou, C., Russo, L., Grigoras, C., Mylonakis, E., 2015, Modeling the 
2014 Ebola Virus Epidemic – Agent-Based Simulations, Temporal Analysis and Future 
Predictions for Liberia and Sierra Leone. PLOS Currents, 2015 Mar 9.

and also

Siettos, C., Anastassopoulou, C., Russo, L., Grigoras, C., Mylonakis, E., 2016, Modeling, 
Forecasting and Control Policy Assessment for the Ebola Virus Disease (EVD) Epidemic in 
Sierra Leone Using Small-World Networked Model Simulations, BMJ Open, 6, e008649 



Model and Methodology in a Nutshell

Number of Agents  = Population  ~O(4-6 millions)

Susceptible
(S)

Exposed
(E)

Infected
(I)

Recovered
(R)

Dead
(D)

Unburied
(DI)

pSE pEI

pIR

pID

Buried
(Db)

Newman-Watts  network

• Short-cut edges are added between 
pairs of nodes with a probability, 
in the same way as in a WS network, 
but without removing edges from 
the underlying lattice. 

• The algorithm starts with 
a one-dimensional ring network
with k neighbors.



Forecasting the Evolution of  EBOLA 
Epidemics: the case of Liberia and Sierra 
Leone

• Time series of the official case counts from the World Health 
Organization were used for model fitting (CDC, 2014). 

• Case data, which included cumulative incidence and cumulative 
deaths by date of report for Liberia and Sierra Leone retrieved on 5th

of January, were found on Wikipedia (2015) and compiled from 
WHO case reports

• Simulations were performed using May 27, 2014 as an initial date 
and a time horizon of 70 days (10 weeks) with an equal sliding 
window time interval; the last date was December 21, 2014. 



RESULTS 

LIBERIA SIERRA LEONE



Conclusions

We propose an approach  bridging state-of-the-art Agent-
Based Models and Numerical Analysis/ Control Techniques       

for the risk assessment and forecasting of Emerging  
Infectious Dynamics

-We have successfully forecasted the  evolution of the Epidemic in Liberia 
and Sierra Leone, ahead of time (a time horizon of 3 months)

- Usefulness of Would-Be Worlds/ Mathematical models should not be 
overestimated. 

-Despite the significant technological progress and 
concentrated wealth, breakdowns and cuts in public 
health infrastructures worldwide are (the) major 
reasons for boosting epidemics.



Conclusions



On one hand….





On the other hand….



The Global Wealth Pyramid



Thank you!


