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Context of individualized prediction

Predicting the risk of an event has become central :
I for monitoring, screening and managing chronic diseases
I for early diagnosing and initiating therapies
I for targeting ”at high risk” individuals in clinical trials

Examples of questions after a diagnosis of cancer
I what is my risk of dying ?
I what is my risk of experiencing a recurrence ?
I what is my prognosis ?

Idea of using the individual information to provide individualized risk
predictions

I individualized medicine
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Principle of individual predictions

Predict what will happen to a patient based on available information

Mostly occurrence of an event
I complication, reccurence, death, diagnosis, etc.

Prediction in terms of :
I probability of having the event
I probability of not having the event (”event-free survival”)
I score (linear combination of prognostic variables)
I at risk group (probability > threshold)

Nature of the available information
I information collected at baseline
→ age, gender, biomarkers at diagnosis, etc

I information collected during a follow-up
→ most often biomarkers
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Principle of individual predictions from baseline
information
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Principle of individual predictions from repeated
information (Proust-Lima 2015)
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Principle of individual predictions from repeated
information
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Examples of applications

Renal disease :
I concentration of creatinine and graft failure

Prostate Cancer :
I Prostate Specific Antigen (PSA) and recurrence of cancer

HIV :
I CD4 counts and AIDS-defining diseases

Hepatitis C :
I hepatic fibrosis stage and complication of cirrhosis
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How to compute dynamic predictions ?

Predicted probability of event given information collected until s :

Pi(s, t) = P(Ti ≤ s + t | Ti ≥ s,Hi(s),Xi)

I baseline covariates Xi and biomarker measures until s :
Hi(s) = {Yi(u), u ≤ s)}
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Predicted probability of event given information collected until s :

Pi(s, t) = P(Ti ≤ s + t | Ti ≥ s,Hi(s),Xi)

I baseline covariates Xi and biomarker measures until s :
Hi(s) = {Yi(u), u ≤ s)}

Two main statistical approaches in the presence of repeated information
I Landmark model (van Houwelingen, 2011)

- focus on the subjects still at risk at the landmark time s
- classical survival model according to information at baseline Xi

and repeated information collected until s, Hi(s)
→ estimated parameters θ̂
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Pi(s, t) = P(Ti ≤ s + t | Ti ≥ s,Hi(s),Xi)

I baseline covariates Xi and biomarker measures until s :
Hi(s) = {Yi(u), u ≤ s)}

Two main statistical approaches in the presence of repeated information
I Landmark model (van Houwelingen, 2011)

- focus on the subjects still at risk at the landmark time s
- classical survival model according to information at baseline Xi

and repeated information collected until s, Hi(s)
→ estimated parameters θ̂

I Joint model (Rizopoulos 2012)
- focus on all the information simultaneously
- joint model for the longitudinal process and the time to event
→ estimated parameters θ̂
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How to obtain a prediction tool from the models ?

Estimations of θ̂ and ˆV(θ̂) on a certain population

For a new subject, we know :
I baseline covariates : Xi
I information collected until s : Hi(s) = {Yi(u), u ≤ s)}

Two strategies (Ferrer 2017) :

1. Plug-in estimate :
individual prediction of event Pi(s, t) computed in θ̂

2. Approximation of the posterior distribution of Pi(s, t) :

D draws θd ∼ N
(
θ̂,

ˆV(θ̂)
)

or combined with a permutation technique
individual prediction of event Pi(s, t) computed in θd

→ median + 95% confidence interval
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Example in Prostate cancer (models estimated on 459 men)

For a man with a recurrence at 3.8 years
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How to assess dynamic predictions ? The methods

Two major notions :
I calibration : x events expected among 100 individuals with a predicted risk of

x%
I discrimination : subjects with higher predicted risk are more likely to

experience the event

Main methods :
I AUC (ROC curve methodology) for discriminative power

evaluates the concordance of p̂i(s, t) with the observations
(Blanche 2013,2015)

I Brier score for error of predictions
compares directly p̂i(s, t) with the event status Υi(s + t)
(Schoop 2008 ; Proust-Lima 2014 ; Blanche 2015)

I prognostic cross-entropy (EPOCE) for prognostic information criterion
evaluates the conditional log-density of the event given the biomarker history
(Commenges 2012 ; Proust-Lima 2014 ; Sène 2016)
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How to assess dynamic predictions ? The estimators

Estimation of measures presents two main difficulties :

I Censoring
Usually done by Inverse Censoring Probability Weighting (IPCW)

I The summary of the evaluation for each couple (s,t)
for AUC and BS, integrated /average versions on a horizon [0, τ ]
for EPOCE, directly on an horizon [0, τ ]
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How to assess dynamic predictions ? The populations

Training data (used for the estimation)

I Apparent measures over evaluate the predictiveness of the model
(overoptimism)
→ especially important with complex models

I Correction by cross-validation (Gerds 2007)
→ very long with complex models

I Correction by approximated cross-validation
→ direct computation - available for EPOCE (Commenges 2012) and BS
(Sène 2016)

Validation (external) data

I Apparent measures OK
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Example : EPOCE in Prostate cancer recurrence from different
joint models (Proust-Lima 2014)

On training data with correction by cross validation
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Example : AUC and BS in joint models for dementia comparing
two longitudinal cognitive measures (Blanche 2015)

INTRODUCTION DYNAMIC PREDICTION ACCURACY LARGE SAMPLE RESULTS APPLICATION PERSPECTIVES CONCLUSION

DYNAMIC PREDICTION ACCURACY CURVES: AUC
t = 5 years, s ∈ S = {0, 0.5, . . . , 4} years
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24/29On validation data
→ MMSE = global functioning ; IST = verbal fluency (with speed component)
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Example : AUC and BS in joint models for dementia comparing
two longitudinal cognitive measures (Blanche 2015)

INTRODUCTION DYNAMIC PREDICTION ACCURACY LARGE SAMPLE RESULTS APPLICATION PERSPECTIVES CONCLUSION

COMPARING PREDICTION ACCURACY CURVES: BS
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landmark time s

B
S

(s
,t)

●

●

●
● ● ●

●

●

●

0 0.5 1 1.5 2 2.5 3 3.5 4

0.
02

0.
05

0.
10

●

●

●
● ● ●

●

●

●

IST
MMSE

landmark time s

D
iff

er
en

ce
 in

  B
S

(s
,t)

● ●

●
● ●

●

●
●

●

0 0.5 1 1.5 2 2.5 3 3.5 4

−
0.

00
5

0
0.

00
5

95% Conf Interval
95% Conf Band

25/29On validation data
→ MMSE = global functioning ; IST = verbal fluency (with speed component)
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What about competing risks ?

A unique cause of event is very rare in practice
I Other causes have to be taken into account for proper estimation of

predictions

Solutions
I Use of statistical models dealing with competing risks (joint or landmark

approaches)
I Use of estimators of predictive accuracy dealing with competing risks

(Blanche 2015)

Example
I joint model for multiple longitudinal measures of cognition, dementia and

death (Proust-Lima 2016)
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What about competing risks ? prediction of dementia and
dementia-free death from a joint latent class model
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Change in treatment in the monitoring of patients after
a cancer (Sène, 2016)

Dynamic predictions assume an absence of change in the follow-up

In practice, frequent initiation of second treatments :
hormonal therapy (HT) in prostate cancer

→ changes the dynamics of the biomarker
→ changes the risk of event

Solution :
- model the initiation of second treatment (ST)
- define differential dynamic predictions according to the initiation of ST
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Differential individual dynamic predictions in patients
free of HT (Sène 2016)

PSA(s)= collected PSA
until today

X= available covariates
at diagnosis

τ = time of initiation
of hormonal therapy

New patient : PSA(s), X

Has not received HT yet
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i ,Xi) P(Ti ≤ s + t | Ti ≥ s, τi > min (Ti, s + t),Y(s)
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Example of differential dynamic predictions (model
estimated on 2386 men treated by radiation therapy)
For a man with a recurrence at 2.7 years
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Conclusion

Individual dynamic predictions :
I usually more accurate and powerful due to the updated information
I can be computed from joint models (but careful with the assumptions)
I can be computed from landmark models (but careful with the efficiency)

Cautions :
I better fit does not mean better predictive accuracy
I a good model for etiology is rarely a good model for prediction (van

Houwelingen 2011)
I don’t forget the problems of competing risks, censoring and selection at the

landmark time
I external validation should always be favored
I prognostic tools need large populations for their development and validation

Software (R packages only + non exhaustive) :
I dynpred, JM, JMBayes, lcmm, frailtypack for computations of dynamic

predictions
I pec, timeROC for evaluation
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