

Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale

sesstim.univ-amu.fr

Cécile PROUST-LIMA

INSERM UMR1219, Université de Bordeaux, France

Individual dynamic predictions: predicting the occurrence of an event based on individual longitudinal information

mai 2017

Cliquez ici pour voir l'intégralité des ressources associées à ce document

Individual Dynamic Predictions:

Predicting the occurrence of an event based on individual longitudinal information

Cécile Proust-Lima

INSERM U1219, Bordeaux Population Health Research Center, Bordeaux, France Univ. Bordeaux, ISPED, Bordeaux, France cecile.proust-lima@inserm.fr

Webinar QuanTIM - May 19, 2017

Cécile Proust-Lima (INSERM, France)

Dynamic predictions

Webinar QuanTIM 1 / 32

Context of individualized prediction

• Predicting the risk of an event has become central :

- for monitoring, screening and managing chronic diseases
- for early diagnosing and initiating therapies
- for targeting "at high risk" individuals in clinical trials
- Examples of questions after a diagnosis of cancer
 - what is my risk of dying ?
 - what is my risk of experiencing a recurrence?
 - what is my prognosis?
- Idea of using the individual information to provide individualized risk predictions
 - individualized medicine

Principle of individual predictions

Predict what will happen to a patient based on available information

- Mostly occurrence of an event
 - complication, reccurence, death, diagnosis, etc.
- Prediction in terms of :
 - probability of having the event
 - probability of not having the event ("event-free survival")
 - score (linear combination of prognostic variables)
 - at risk group (probability > threshold)

Nature of the available information

- information collected at baseline
 - \rightarrow age, gender, biomarkers at diagnosis, etc
- information collected during a follow-up
 - \rightarrow most often biomarkers

Principle of individual predictions from baseline information

Principle of individual predictions from baseline information

Principle of individual predictions from baseline information

Principle of individual predictions from repeated information (Proust-Lima 2015)

Principle of individual predictions from repeated information

Examples of applications

- Renal disease :
 - concentration of creatinine and graft failure
- Prostate Cancer :
 - Prostate Specific Antigen (PSA) and recurrence of cancer
- HIV :
 - CD4 counts and AIDS-defining diseases
- Hepatitis C :
 - hepatic fibrosis stage and complication of cirrhosis

How to compute dynamic predictions?

• Predicted probability of event given information collected until *s* :

$$P_i(s,t) = P(T_i \le s + t \mid T_i \ge s, \mathcal{H}_i(s), X_i)$$

baseline covariates X_i and biomarker measures until s : H_i(s) = {Y_i(u), u ≤ s)}

b) 4 The b

How to compute dynamic predictions?

• Predicted probability of event given information collected until s :

$$P_i(s,t) = P(T_i \le s+t \mid T_i \ge s, \mathcal{H}_i(s), X_i)$$

baseline covariates X_i and biomarker measures until s : H_i(s) = {Y_i(u), u ≤ s)}

- Two main statistical approaches in the presence of repeated information
 - Landmark model (van Houwelingen, 2011)
 - focus on the subjects still at risk at the landmark time s
 - classical survival model according to information at baseline X_i and repeated information collected until s, $\mathcal{H}_i(s)$
 - ightarrow estimated parameters $\hat{ heta}$

How to compute dynamic predictions?

Predicted probability of event given information collected until s :

$$P_i(s,t) = P(T_i \le s+t \mid T_i \ge s, \mathcal{H}_i(s), \mathbf{X}_i)$$

baseline covariates X_i and biomarker measures until s : H_i(s) = {Y_i(u), u ≤ s)}

• Two main statistical approaches in the presence of repeated information

- Landmark model (van Houwelingen, 2011)
 - focus on the subjects still at risk at the landmark time s
 - classical survival model according to information at baseline X_i and repeated information collected until s, H_i(s)
 - \rightarrow estimated parameters $\hat{ heta}$
- Joint model (Rizopoulos 2012)
 - focus on all the information simultaneously
 - joint model for the longitudinal process and the time to event
 - ightarrow estimated parameters $\hat{ heta}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

How to obtain a prediction tool from the models?

- Estimations of $\hat{\theta}$ and $V(\hat{\theta})$ on a certain population
- For a new subject, we know :
 - baseline covariates : X_i
 - information collected until $s : \mathcal{H}_i(s) = \{Y_i(u), u \leq s)\}$
- Two strategies (Ferrer 2017) :
 - 1. Plug-in estimate : individual prediction of event $P_i(s, t)$ computed in $\hat{\theta}$
 - 2. Approximation of the posterior distribution of $P_i(s, t)$: D draws $\theta_d \sim \mathcal{N}\left(\hat{\theta}, \hat{V}(\hat{\theta})\right)$ or combined with a permutation technique individual prediction of event $P_i(s, t)$ computed in θ_d \rightarrow median + 95% confidence interval

How to assess dynamic predictions? The methods

- Two major notions :
 - calibration : x events expected among 100 individuals with a predicted risk of x%
 - discrimination : subjects with higher predicted risk are more likely to experience the event
- Main methods :
 - AUC (ROC curve methodology) for discriminative power evaluates the concordance of p̂_i(s, t) with the observations (Blanche 2013,2015)
 - Brier score for error of predictions compares directly p̂_i(s, t) with the event status Υ_i(s + t) (Schoop 2008; Proust-Lima 2014; Blanche 2015)
 - prognostic cross-entropy (EPOCE) for prognostic information criterion evaluates the conditional log-density of the event given the biomarker history (Commenges 2012; Proust-Lima 2014; Sène 2016)

< □ > < □ > < □ > < □ > < □ >

How to assess dynamic predictions? The estimators

• Estimation of measures presents two main difficulties :

- Censoring Usually done by Inverse Censoring Probability Weighting (IPCW)
- The summary of the evaluation for each couple (s,t) for AUC and BS, integrated /average versions on a horizon [0, τ] for EPOCE, directly on an horizon [0, τ]

How to assess dynamic predictions? The populations

- Training data (used for the estimation)
 - Apparent measures over evaluate the predictiveness of the model (overoptimism)
 - \rightarrow especially important with complex models
 - Correction by cross-validation (Gerds 2007)
 - $\rightarrow\,$ very long with complex models
 - Correction by approximated cross-validation
 direct computation available for EPOCE (Commenges 2012) and BS (Sène 2016)
- Validation (external) data
 - Apparent measures OK

Example : EPOCE in Prostate cancer recurrence from different joint models (Proust-Lima 2014)

On training data with correction by cross validation

Cécile Proust-Lima (INSERM, France)

Example : AUC and BS in joint models for dementia comparing two longitudinal cognitive measures (Blanche 2015)

On validation data

 \rightarrow MMSE = global functioning; IST = verbal fluency (with speed component)

Example : AUC and BS in joint models for dementia comparing two longitudinal cognitive measures (Blanche 2015)

On validation data

 \rightarrow MMSE = global functioning; IST = verbal fluency (with speed component)

What about competing risks?

- A unique cause of event is very rare in practice
 - Other causes have to be taken into account for proper estimation of predictions
- Solutions
 - Use of statistical models dealing with competing risks (joint or landmark approaches)
 - Use of estimators of predictive accuracy dealing with competing risks (Blanche 2015)
- Example
 - joint model for multiple longitudinal measures of cognition, dementia and death (Proust-Lima 2016)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

What about competing risks? prediction of dementia and dementia-free death from a joint latent class model

What about competing risks? prediction of dementia and dementia-free death from a joint latent class model

What about competing risks? prediction of dementia and dementia-free death from a joint latent class model

Change in treatment in the monitoring of patients after a cancer (Sène, 2016)

Dynamic predictions assume an absence of change in the follow-up

In practice, frequent initiation of second treatments : hormonal therapy (HT) in prostate cancer

- ightarrow changes the dynamics of the biomarker
- \rightarrow changes the risk of event

Solution :

- model the initiation of second treatment (ST)
- define differential dynamic predictions according to the initiation of ST

Differential individual dynamic predictions in patients free of HT (Sène 2016)

PSA(s)= collected PSA until today X= available covariates at diagnosis

 $m{ au} = ext{time of initiation}$ of hormonal therapy

Differential individual dynamic predictions in patients free of HT (Sene 2016)

PSA(s)= collected PSA until today X= available covariates at diagnosis τ = time of initiation

r = time of initiation of hormonal therapy

 $P(T_i \le s + t \mid T_i \ge s, \tau_i = s, Y_i^{(s)}, X_i)$

Differential individual dynamic predictions in patients free of HT (Sene 2016)

 $P(T_i \le s + t \mid T_i \ge s, \tau_i = s, Y_i^{(s)}, X_i) \qquad P(T_i)$

$$P(T_i \leq s+t \mid T_i \geq s, \tau_i > \min(T_i, s+t), Y_i$$

estimated on 2386 men treated by radiation therapy) *For a man with a recurrence at 2.7 years*

x PSA measures

estimated on 2386 men treated by radiation therapy) *For a man with a recurrence at 2.7 years*

Years since end of EBRT

estimated on 2386 men treated by radiation therapy) *For a man with a recurrence at 2.7 years*

estimated on 2386 men treated by radiation therapy) For a man with a recurrence at 2.7 years

Conclusion

• Individual dynamic predictions :

- usually more accurate and powerful due to the updated information
- can be computed from joint models (but careful with the assumptions)
- can be computed from landmark models (but careful with the efficiency)

• Cautions :

- better fit does not mean better predictive accuracy
- a good model for etiology is rarely a good model for prediction (van Houwelingen 2011)
- don't forget the problems of competing risks, censoring and selection at the landmark time
- external validation should always be favored
- prognostic tools need large populations for their development and validation
- Software (R packages only + non exhaustive) :
 - dynpred, JM, JMBayes, lcmm, frailtypack for computations of dynamic predictions
 - pec, timeROC for evaluation

References

Blanche et al. (2013). Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Statistics in Medicine, 32(30), 5381-5397.

Blanche et al. (2015). Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71(1), 102-113.

Commenges et al. (2012). Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks. Biometrics, 68(2), 380-387.

Gerds & Schumacher (2007). Efron-type measures of prediction error for survival analysis. Biometrics, 63(4), 1283-7.

Ferrer et al. (2017). Individual dynamic predictions : estimator validation and robustness to models hypotheses. Technical Report.

Proust-Lima & Blanche (2015). Dynamic Predictions. In Wiley StatsRef : Statistics Reference Online. John Wiley & Sons, Ltd

Proust-Lima et al. (2016). Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death : a latent process and latent class approach. Statistics in Medicine, 35(3), 382-398.

Proust-Lima et al. (2014). Joint latent class models for longitudinal and time-to-event data : A review. Statistical Methods in Medical Research, 23(1), 74-90.

Rizopoulos (2012). Joint Models for Longitudinal and Time-to-Event Data : With Applications in R. Chapman & Hall/CRC Biostatistics Series.

Schoop et al. (2008). Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates. Biometrics, 64(2), 603-10.

Sène et al. (2016). Individualized dynamic prediction of prostate cancer recurrence with and without the initiation of a second treatment : Development and validation. Statistical Methods in Medical Research, 25(6), 2972-2991.

van Houwelingen and Putter (2011). Dynamic Prediction in Clinical Survival Analysis. Monographs on Statistics & Applied Probab 123. Chapman & Hall/CRC, Lon- don.

van Houwelingen (2014). From model building to validation and back : a plea for robustness. Statistics in Medicine, 33(30), 5223-5238.

Vickers & Cronin (2010). Everything you always wanted to know about evaluating prediction models (but were too afraid to ask). Urology, 76(6), 1298-1301.