

Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale

www.sesstim-orspaca.org

Juste Aristide GOUNGOUNGA

MD, PhD student Aix Marseille Université - INSERM - IRD - SESSTIM UMR912

Estimation de la survie nette dans les essais cliniques : Intérêts des méthodes utilisées dans les études populationnelles

juin 2016

Cliquez ici pour voir l'intégralité des ressources associées à ce document

Estimation de la survie nette dans les essais cliniques : intérêts des méthodes utilisées dans les études populationnelles

Juste Aristide Goungounga

Aix Marseille Univ, INSERM, IRD, SESSTIM

Webinar QanTIM, 17 juin 2016

Etudes populationnelles vs Essais cliniques : Importance de l'information sur la cause de décès

- La survie dans les essais cliniques : intention d'estimer la survie due à la maladie étudiée
 - → Approche traditionnelle utilise la cause de décès ¹ (CD) : survie nette spécifique

^{1.} Van Rompaye, Goetghebeur et Jaffar 2010.

^{2.} Perme, Stare et Estève 2012.

^{3.} Danieli et al. 2012.

roduction Objectif Méthodologie Résultats Conclusion Références

Etudes populationnelles vs Essais cliniques : Importance de l'information sur la cause de décès

- La survie dans les essais cliniques : intention d'estimer la survie due à la maladie étudiée
 - → Approche traditionnelle utilise la cause de décès ¹ (CD) : survie nette spécifique
- Dans les études populationnelles : survie nette populationnelle
- ullet La mortalité observée : somme de deux forces (CD et $ar{CD}$)
 - Approche s'affranchissant de la CD : utilisation de table de mortalité
 - Estimateur de Pohar Perme² et regression ajusté sur les covariables démographiques³
- 1. Van Rompaye, Goetghebeur et Jaffar 2010.
- 2. Perme, Stare et Estève 2012.
- DANIELI et al. 2012.

Survie nette dans les Essais Cliniques : non-représentativité et Correction des biais de sélection des patients

- Critères de sélection dans les essais cliniques : patients non-représentatifs de la population couverte par les tables
- Hypothèse : mortalité $ar{CD}$ des patients est proportionelle à celle de la population 4
- model de Cheuvart et Ryan : sur données groupées
- model de Cheuvart et Ryan étendu : données individuelles ⁵

^{4.} Cheuvart et Ryan 1991.

TOURAINE et al. 2014.

Objectif général - objectifs spécifiques

- Comparer les performances
 - ⇒ Estimateurs de la survie nette spécifique
 - Estimateurs de survie nette populationnelle
- dans le cadre des essais cliniques
- par étude de simulation,

Objectif général - objectifs spécifiques

- Comparer les performances
 - → Estimateurs de la survie nette spécifique
 - Estimateurs de survie nette populationnelle
- dans le cadre des essais cliniques
- par étude de simulation,
 - ⇒ Estimateur de Kaplan-Meier (KM)
 - Estimateur de Nelson-Aalen pondéré (wNA)

Objectif général - objectifs spécifiques

- Comparer les performances
 - Estimateurs de la survie nette spécifique
 - Estimateurs de survie nette populationnelle
- dans le cadre des essais cliniques
- par étude de simulation,
 - **◯** Estimateur de Kaplan-Meier (KM)
 - Estimateur de Nelson-Aalen pondéré (wNA)
 - Estimateur de Pohar-Perme (PP)
 - Modèle d'Estève (Est.)
 - Modèle de Cheuvart-Ryan étendue (CRe)

Estimateurs and Modèles

Estimateurs de la survie nette

$$KM: \hat{S}_{E}(t) = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$
 (1)

$$wNA: \hat{\Lambda}_{E}^{w}(t) = \int_{0}^{t} \frac{dN_{E}^{w}(u)}{Y^{w}(u)}$$
 (2)

Estimateurs and Modèles

Estimateurs de la survie nette

$$KM: \hat{S}_{E}(t) = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$
 (1)

$$wNA: \hat{\Lambda}_{E}^{w}(t) = \int_{0}^{t} \frac{dN_{E}^{w}(u)}{Y^{w}(u)}$$
 (2)

$$PP: \hat{\Lambda}_{E}(t) = \int_{0}^{t} \frac{dN^{w}(u)}{Y^{w}(u)} - \int_{0}^{t} \frac{\sum_{i=1}^{n} Y_{i}^{w}(u) d\Lambda_{P_{i}}(u)}{Y^{w}(u)}$$
(3)

Estève:
$$\hat{\lambda}_E = \lambda_O(t) - \lambda_P(t)$$
 (4)

$$CRe: \hat{\lambda}_E = \lambda_O(t) - \hat{\alpha}\lambda_P(t)$$
 (5)

- Simulation de 1000 jeux de données avec 2000 patients
- Pour chaque patient, nous générons les variables :
 - \supset Sexe : P(femme) = 100%;
 - \bigcirc Age : dans les deux bras ⁶; $\beta_{age} = (0, 0.05)$
 - Traitement : P(trt) = 50%; $\beta_{trt} = (-0.5, 0, 0.5)$

Design de simulation d'un essai clinique randomisé unicentrique

- Simulation de 1000 jeux de données avec 2000 patients
- Pour chaque patient, nous générons les variables :

```
\supset Sexe : P(femme) = 100%;
```

$$\bigcirc$$
 Age : dans les deux bras ⁶; $\beta_{age} = (0, 0.05)$

Traitement : P(trt) = 50%;
$$\beta_{trt} = (-0.5, 0, 0.5)$$

Temps :

```
T_{Pop} \sim \alpha \lambda_{pop} et \alpha = (0.5, 1, 2, 4)
```

$$T_{Spe} \sim \text{Weibull généralisée}$$

$$T_{Cens.} \sim \mathcal{U}[0, b]$$
; $T_{Cens.} = 50\%$ et Cens.Ad=15 ans

$$T_{Obs.} = min(T_{Popu.}, T_{Spe.}, T_{Cens.});$$

$$T_{Hypo.} = min(T_{Cens.}, T_{Spe.})$$

^{6.} Hennequin et al. 2013.

Design de simulation d'un essai clinique randomisé unicentrique

Statut

- status = 1 si $T_{Obs} < T_{Cens}$, 0 sinon
- $rac{1}{2}$ cause = 1 si $T_{Obs.} = T_{Spe.}$, 0 sinon
 - > 0% d'erreur sur la CD après 5 ans
 - ➤ 20% d'erreur sur la CD après 5 ans
 - ⇒ 30% d'erreur sur la CD après 5 ans
- cause_{Hypo.} = 1 si $T_{Hypo} = T_{Spe.}$, 0 sinon

Estimation de la survie nette et information sur la CD

Structure des données

T0bs	ТНуро	Tpop	Tspe	tpsCens	statut	cause0%	miscause20%	MIScause30%	CauseHypo
4.61	11.27	4.61	11.27	15.00	1	0	0	0	1
9.21	9.21	63.78	9.21	15.00	1	1	1	1	1
7.83	7.83	65.06	7.83	15.00	1	1	1	0	1
12.47	12.47	58.17	12.47	15.00	1	1	0	1	1
15.00	15.00	52.64	25.12	15.00	0	0	0	0	0
15.00	15.00	52.64	25.12	15.00	0	0	0	0	0

TABLE - Méthodes d'estimation

Méthode	T _{Obs}	Statut	Cause (0, 20, 30%)	T _{Hypo} .	Cause _{Hypo} .
Kaplan-Meier hypothétique				V	V
Kaplan-Meier (KM)	V		✓		
Nelson-Aalen pondéré (wNA)	V		✓		
Maja Pohar Perme (PP)	V	V			
Esteve(Est.)	V	V			
Cheuvart-Ryan étendu (CRe)	V	V			

Estimation de la survie nette et information sur la CD

Structure des données

T0bs	ТНуро	Tpop	Tspe	tpsCens	statut	cause0%	miscause20%	MIScause30%	CauseHypo
4.61	11.27	4.61	11.27	15.00	1	0	0	0	1
9.21	9.21	63.78	9.21	15.00	1	1	1	1	1
7.83	7.83	65.06	7.83	15.00	1	1	1	0	1
12.47	12.47	58.17	12.47	15.00	1	1	0	1	1
15.00	15.00	52.64	25.12	15.00	0	0	0	0	0
15.00	15.00	52.64	25.12	15.00	0	0	0	0	0

TABLE - Méthodes d'estimation

Méthode	T _{Obs}	Statut	Cause (0, 20, 30%)	T _{Hypo} .	Cause _{Hypo} .
Kaplan-Meier hypothétique				V	V
Kaplan-Meier (KM)	V		✓		
Nelson-Aalen pondéré (wNA)	V		✓		
Maja Pohar Perme (PP)	V	V			
Esteve(Est.)	V	V			
Cheuvart-Ryan étendu (CRe)	V	V			

Indicateurs statistiques de performance

Biais =
$$1/M \sum_{j=1}^{M} (\hat{S}_{ej}(t) - S_{e}(t))$$
 (6)

$$EQM = \sqrt{1/M \sum_{j=1}^{M} (\hat{S}_{ej}(t) - S_{e}(t))^{2}}$$
 (7)

$$TRE = 1/M \sum_{j=1}^{M} (\hat{S}_{ejinf}(t) \le S_{e}(t) \le \hat{S}_{ejsup}(t)) * 100$$
 (8)

Biais et EQM : effet de sélection α , de l'âge et du traitement

TABLE - Biais en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.000	0.000	0.000	0.029
KM 20%		0.027	0.042	0.068
KM 30%		0.042	0.064	0.088
wNA 0%	0.000	0.000	0.000	0.029
wNA 20%		0.027	0.042	0.067
wNA 30%		0.042	0.064	0.088
PP	0.013	0.030	0.056	-0.181
Est.	0.020	0.042	0.059	-0.167
CRe	0.001	0.004	0.004	0.022

TABLE - Biais en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.000	0.000	0.000	0.029
KM 20%		0.027	0.042	0.068
KM 30%		0.042	0.064	0.088
wNA 0%	0.000	0.000	0.000	0.029
wNA 20%		0.027	0.042	0.067
wNA 30%		0.042	0.064	0.088
PP	0.013	0.030	0.056	-0.181
Est.	0.020	0.042	0.059	-0.167
CRe	0.001	0.004	0.004	0.022

TABLE - Biais en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.000	0.000	0.000	0.029
KM 20%		0.027	0.042	0.068
KM 30%		0.042	0.064	0.088
wNA 0%	0.000	0.000	0.000	0.029
wNA 20%		0.027	0.042	0.067
wNA 30%		0.042	0.064	0.088
PP	0.013	0.030	0.056	-0.181
Est.	0.020	0.042	0.059	-0.167
CRe	0.001	0.004	0.004	0.022

TABLE - EQM en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.007	0.010	0.010	0.033
KM 20%		0.029	0.043	0.069
KM 30%		0.043	0.065	0.089
wNA 0%	0.007	0.010	0.011	0.033
wNA 20%		0.029	0.043	0.069
wNA 30%		0.043	0.065	0.089
PP	0.015	0.033	0.058	0.181
Est.	0.022	0.043	0.060	0.167
CRe	0.009	0.014	0.018	0.043

TABLE - EQM en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.007	0.010	0.010	0.033
KM 20%		0.029	0.043	0.069
KM 30%		0.043	0.065	0.089
wNA 0%	0.007	0.010	0.011	0.033
wNA 20%		0.029	0.043	0.069
wNA 30%		0.043	0.065	0.089
PP	0.015	0.033	0.058	0.181
Est.	0.022	0.043	0.060	0.167
CRe	0.009	0.014	0.018	0.043

TABLE - EQM en termes de survie nette

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	0.007	0.010	0.010	0.033
KM 20%		0.029	0.043	0.069
KM 30%		0.043	0.065	0.089
wNA 0%	0.007	0.010	0.011	0.033
wNA 20%		0.029	0.043	0.069
wNA 30%		0.043	0.065	0.089
PP	0.015	0.033	0.058	0.181
Est.	0.022	0.043	0.060	0.167
CRe	0.009	0.014	0.018	0.043

TABLE - Taux de recouvrement empirique

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	95.0	95.2	95.5	47.1
KM 20%		20.0	1.8	0.0
KM 30%		0.6	0.0	0.0
wNA 0%	95.5	95.3	95.3	47.6
wNA 20%		20.0	1.9	0.5
wNA 30%		0.4	0.0	0.0
PP	68.5	26.4	1.9	0.0
Est.	57.6	48.5	36.5	0.0
CRe	99.0	99.6	99.9	98.5

TABLE - Taux de recouvrement empirique

Temps	5	10	15	15
		α =0.5		α =4
KM 0%	95.0	95.2	95.5	47.1
KM 20%		20.0	1.8	0.0
KM 30%		0.6	0.0	0.0
wNA 0%	95.5	95.3	95.3	47.6
wNA 20%		20.0	1.9	0.5
wNA 30%		0.4	0.0	0.0
PP	68.5	26.4	1.9	0.0
Est.	57.6	48.5	36.5	0.0
CRe	99.0	99.6	99.9	98.5

TABLE - Taux de recouvrement empirique

Temps	5	10	15	15
		α =4		
KM 0%	95.0	95.2	95.5	47.1
KM 20%		20.0	1.8	0.0
KM 30%		0.6	0.0	0.0
wNA 0%	95.5	95.3	95.3	47.6
wNA 20%		20.0	1.9	0.5
wNA 30%		0.4	0.0	0.0
PP	68.5	26.4	1.9	0.0
Est.	57.6	48.5	36.5	0.0
CRe	99.0	99.6	99.9	98.5

Effet de l'âge = 0.05; effet du traitement= 0.5

TABLE - Estimation de l'effet de sélection, de l'âge et du traitement

α	Méthode	\hat{lpha}		$\hat{eta}_{\sf age}$		\hat{eta}_{trt}	
		Biais	EQM	Biais	EQM	Biais	EQM
1	Est.			-0.001	0.003	0.018	0.006
1	CRe	0.00	0.37	-0.001	0.004	0.021	0.008

Effet de l'âge = 0.05; effet du traitement= 0.5

TABLE - Estimation de l'effet de sélection, de l'âge et du traitement

α	Méthode	\hat{lpha}		$\hat{eta}_{\sf age}$		\hat{eta}_{trt}	
		Biais	EQM	Biais	EQM	Biais	EQM
0.5	Est.			-0.005	0.005	-0.438	0.205
	CRe	0.11	(0.13)	0.000	0.001	-0.043	0.020
1	Est.			-0.001	0.003	0.018	0.006
1	CRe	0.00	0.37	-0.001	0.004	0.021	0.008

Effet de l'âge = 0.05; effet du traitement= 0.5

TABLE - Estimation de l'effet de sélection, de l'âge et du traitement

ο,	Méthode	\hat{lpha}		$\hat{eta}_{\sf age}$		\hat{eta}_{trt}	
α		Biais	EQM	Biais	EQM	Biais	EQM
0.5	Est.			-0.005	0.005	-0.438	0.205
	CRe	0.11	$\left \left(0.13 \right) \right $	0.000	0.001	-0.043	0.020
1	Est.			-0.001	0.003	0.018	0.006
1	CRe	0.00	0.37	-0.001	0.004	0.021	0.008
2	Est.			0.005	0.006	-0.077	0.011
2	CRe	0.14	(0.52)	-0.002	0.005	0.033	0.013
4	Est.			0.015	0.015	-0.498	0.253
4	CRe	0.15	(0.54)	0.001	0.007	-0.050	0.026

Conclusions et perspectives

- Première evaluation par simulation sur design unicentrique
- La survie nette spécifique : moins biaisée en théorie (données hypothétiques)
- Mauvaise classification de la cause de décès 7 : recours aux approches utilisant les tables de mortalité
 - Le model de CRe : alternative à recommander

Conclusions et perspectives

- Première evaluation par simulation sur design unicentrique
- La survie nette spécifique : moins biaisée en théorie (données hypothétiques)
- Mauvaise classification de la cause de décès 7 : recours aux approches utilisant les tables de mortalité
 - Le model de CRe : alternative à recommander
- Perspectives
 - Scénarios sur essai clinique multicentrique
 - ☐ Investigations de l'impact de l'utilisation du code postal du centre vs « vrai » département des patients

Remerciements

Quelques références

- B CHEUVART et L RYAN. "Adjusting for age-related competing mortality in long-term cancer clinical trials". In: Statistics in medicine 10.1 (1991), p. 65-77.
- Coraline Daniell et al. "Estimating net survival: the importance of allowing for informative censoring". In: Statistics in medicine 31.8 (2012), p. 775–786.
- Christophe Hennequin et al. "Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy". In: International Journal of Radiation Oncology* Biology* Physics 86.5 (2013), p. 860–866.
- Maja Pohar PERME, Janez STARE et Jacques ESTÈVE. "On estimation in relative survival". In: Biometrics 68.1 (2012), p. 113–120.
- Célia TOURAINE et al. "An excess hazard model adjusting for lack of additional life table variables". In: ISCB 2014, 35th annual conference of International Society for Clinical Biostatistics. Vienna, Austria, 2014.
- Bart VAN ROMPAYE, Els GOETGHEBEUR et Shabbar JAFFAR. "Design and testing for clinical trials faced with misclassified causes of death". In: *Biostatistics* (2010), kxq011.
- Bart VAN ROMPAYE, Shabbar JAFFAR et Els GOETGHEBEUR. "Estimation with Cox models: Cause-specific survival analysis with misclassified cause of failure". In: Epidemiology (Cambridge, Mass.) 23.2 (2012), p. 194.

QUESTIONS? Merci de votre attention!

Juste Aristide Goungounga

email: juste.goungounga@univ-amu.fr

