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Setting the scene ... (randomized) clinical trials

I How do we establish that a new treatment is indeed better than what we
actually use to treat (or prevent) a given disease

Randomisation

Best current treatment strategy

New experimental treatment
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Setting the scene ... survival outcome

I Time-to-event or survival data analysis

time scale

origin event

survival time
or

time-to-event (T )

birth death

randomisation disease progression

I Main function of interest:

S(t) = 1− F (t) = P(T > t)
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A well-known phenomenon: right-censoring

In practice: it is not possible to follow all observations until the occurence of
the event of interest
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A well-known phenomenon: right-censoring

In practice: it is not possible to follow all observations until the occurence of
the event of interest

time scale

origin:

treatment

end of
the study

1 ••

2 ••

××
×

••

××
×

T̃ = T and ∆ = 1

T̃ = C and ∆ = 0

I Observed data:
I Follow-up time: T̃ = min(T ,C)
I Censoring indicator: ∆ = I (T ≤ C)



Several analysis techniques are available

Assuming independent/non-informative censoring, the most often used

methods are

I Kaplan-Meier estimator: non-parametric estimation of the survival

distribution S(t)

Spicka et al., Annals of Hematology, 2019





Several analysis techniques are available

Assuming independent/non-informative censoring, the most often used

methods are

I Cox Proportional Hazards (PH) model: semi-parametric model for the

hasard function

h(t | X) = h0(t) exp(Xtβ)

Important assumption: proportional hazards

h(t | X1)

h(t | X2)
=

exp(X1
tβ)

exp(X2
tβ)



The concept of cure in survival analysis

“Classical” survival analysis supposes that all observations are susceptible to

the event.

In certain contexts, a fraction of the observations may never experience the

event of interest:

I Time-to-relapse for a curable disease: patients who are cured from the

disease will never relapse

I Time-to-death from the disease under study: patients who are cured

from the disease will never die from it

Observations that do not experience the event : cured, non-susceptible or

long-term survivors, ...

⇒ Survival data are said to contain a cure fraction.
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The concept of cured in survival analysis

Since survival data are subject to censoring, the presence of a cure fraction is
not observed.

Example: Curable disease - time to relapse
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Survival analysis with a cure fraction

↪→ Due to the presence of a cure fraction, the survival function “levels up” at
some value

Cure models:

I Extension of survival analysis to take the presence of a cure fraction into
account.

I Two main families of cure models:
I Mixture cure models
I Promotion time cure models



Cure Models: a Literature Review (Amico and Van Keilegom, 2018)
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The Mixture Cure Model

Let Y denotes the uncure status, such that Y = 1 for a uncured (susceptible)
subject and Y = 0 for a cured subject.

The mixture cure model writes

Spop(t|x, z) = {1− π(x)}+ π(x) Su(t|z),

where

π(x) = P(Y = 1|X = x) for some vector of covariates X

−→ incidence

Su(t|z) = P(T > t|Y = 1,Z = z) for some vector of covariates Z

−→ latency

Cure rate: limt→∞Spop(t|x, z) = 1− π(x)



The Mixture Cure Model

Spop(t|x, z) = {1− π(x)}+ π(x) Su(t|z),

Advantage: allows to disentangle the effects of covariates on the incidence and
on the latency

I e.g. for treatment: long-term curative treatment effect and short-term
life-prolonging treatment effect

I in lines with intuition that patient/disease related factors associated with
short and long-term effects are not necesarily the same

Most often: (semi-)parametric logistic / PH mixture cure model

I incidence: logistic regression

I latency: (semi-)parametric PH model

But other approaches have been proposed in the literature (mainly for the
latency)



The Mixture Cure Model

The (semi-)parametric logistic / PH mixture cure model:

I PH assumption in the uncured sub-population

I no PH assumption at the level of the population



The Mixture Cure Model: Estimation

−→ cure status only known for the uncensored observations

Fully parametric model:

I maximisation of the likelihood function [smcure, PSPMCM]

I asymptotic std errors can be obtained by inverting the Fisher information
matrix

Logistic incidence and semi-parametric (Cox) latency:

I Partial likelihood method does not work
I Other approaches

I EM algorithm [smcure, PSPMCM] (Peng and Dear, 2000; Sy and Taylor, 2000)
I Marginal likelihood (MC approximation) (Kuk and Chen, 1992)
I Penalized likelihood approach (splines) (Corbieres et al., 2009)

I zero-tail constraint

Other (less parametric) models:

I ad-hoc methods



The Promotion Time Cure Model

The Promotion Time Cure Model writes

Spop(t|x) = exp{−θ(x)F (t)}

where

F (t) is a proper distribution function

→ can be parametric or non parametric

θ(x) is a known link function with an intercept

→ can be parametric or non parametric

Cumulative hazard function: θ(x)F (t) is bounded
⇒ bounded cumulative hazard models

Cure rate: limt→∞Spop(t|x) = exp{−θ(x)}



The Promotion Time Cure Model

I The promotion time cure model possesses the PH property (at the
population level):

h(t | xi )
h(t | xj)

=
θ(xi )

θ(xj)

I The semi-parametric promotion time cure model with an exponential link
function can actually be seen as a generalization of the Cox PH model
(Portier et al., 2017)

Spop(t|x) = exp{− exp(β0 + x tβ)F (t)}
= exp{− exp(x tβ) exp(β0)F (t)}
= exp{− exp(x tβ)H(t)}

So, in practice

β̂PT = β̂PH

exp(β̂0,PT ) = ĤPH(T(n))

exp(β̂0,PT )F̂PT (t) = ĤPH(t)



The Promotion Time Cure Model

Consequences: When the exponential link function is used and F(.) is left
unspecified

I estimates of the promotion time model can be obtained from fitting a Cox
PH model

I as long as the PH assumption is met, Cox P model provides reliable results
even in the presence of a non-negligible cure fraction but parameters
should be interpreted accordingly

...no need for cure models since the Cox PH model does the job ...
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The Promotion Time Cure Model

Spop(t|x) = exp{−θ(x)F (t)}

Advantage:
I Seminal biological interpretation of the model: modeling cancer relapse

from Ni carcinogenic cells left
I Ni ∼ Poisson(θ(Xi ))
I Promotion times Wik , i = 1, ..., nk iid with distribution F (t)
I Time until relapse Ti = min(W1, ...,WNi

)

Interpretation:

I Covariates X affect both the probability of being cured and the survival of
uncured subjects
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The Promotion Time Cure Model: Estimation

Mainly studied in a Bayesian context

Different frequentist approaches for the semi-parametric model

I maximisation of a profile likelihood (Tsodikov, 1998)

I maximisation of the full likelihood through a profiling approach (Zeng et al.,

2006)

I maximisation of the full likelihood through a backfitting approach
[miCoPTCM] (Ma and Yin, 2008)

I as a Cox model (if exponential link) [coxph]



OK, but ...cure or not cure ?

When should we use a cure model to analyse our data ?

... and if indeed we have to, do we use a mixture cure model or a
promotion time model ?



OK, but ...cure or not cure ?

Simulation study

I 500 datasets of 500 patients

I include a binary covariate for treatment

I 6 differents settings

1 Parametric PH no cure 53% censoring
2 Parametric PH no cure 27% censoring
3 Parametric PTM 29% and 48% 57% censoring
4 Parametric MCM (both) 27% and 50% 54% censoring
5 Parametric MCM (incidence) 27% and 50% 56% censoring
6 Parametric MCM (latency) 38% and 38% 54% censoring





OK, but ...cure or not cure ?

⇒ The consequences of a model misspecification can vary largely, depending on
the true model underlying the data, and on the focus of the estimation: cure
probability, conditional survival function, treatment effect size and signifiance.



OK, but ...cure or not cure ?

If no cure:

I treatment effect is well recovered by the PTM and quite well by the MCM
when the censoring is not too high

I estimated coefficients in the incidence part of the MCM are largely biased
and accompanied by a very large s.e.

I ability of the models to acknowledge the absence of cure is highly
dependent on the amount of censoring

I zero-tail constraint: leads to a positive bias in the estimation of the cure
probability, and a negative bias in the estimation of the survival function
of the uncured patients.



OK, but ...cure or not cure ?

If cure: Pay attention to PH assumption !

if PH holds, e.g. data generated from a PTM or from a MCM with a trt
affecting only the incidence

I although we can not formally compare their coefficients, PTM and MCM
seem to recover the trt effect

I PTM does not allow us to disentangle the short- and the long-term effects

I estimation of the cure rate in each arm and of the conditional survival
curve for the uncured is nearly unbiased with both PTM and MCM



OK, but ...cure or not cure ?
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If cure: Pay attention to PH assumption!

if PH does not hold, e.g. data generated from a MCM with a trt affecting the
latency (and the incidence)

I PTM seems to recover some part of trt effect but
- the estimated cure rate is biased (downwards in the control arm and
upward in the treatment arm)
- the estimated conditional survival is biased (upwards in the control arm
and downward in the treatment arm)

I no problem when using the appropriate model (as expected)
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CONCLUSIONS

For some types of cancer (as well as other diseases), cure is now a reality for
patients and MDs

I When there is a fraction of cure, the proportion of patients being cure is a
useful piece of information in the evaluation of cure treatment

I As long as the PH assumption is met, CM provides reliable estimates of
the treatment effect (but PTM preferable if cure)

I If the PH assumption is not met, don’t use PTM nor CM

I If the PH assumption is not met due to the presence of a cure
fraction, use MCM

I If the PH assumption is not met for another reason ... then ask
someone else what to do!
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I As long as the PH assumption is met, CM provides reliable estimates of
the treatment effect (but PTM preferable if cure)

I If the PH assumption is not met, don’t use PTM nor CM

I If the PH assumption is not met due to the presence of a cure
fraction, use MCM

I If the PH assumption is not met for another reason ... then ask
someone else what to do!



CONCLUSIONS

Be careful with the statement “As long as one can assume that not all patients
will experience the event of interest, a cure model should be preferred”

I Must have evidence of cure fraction, via sufficient follow-up

I We recommend not using cure model to estimate the proportion of cure
when there is no evidence of such a fraction of cure

I If PH holds and not need to separate short- and long-term effect, CM is
indeed ok

I MCM will allow to disentangle short-term (life-prolonging effect) from
long-term (life-saving effect) of a treatment



Any questions ?
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