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Why multivariable modeling?

• Statistical models are useful tools…

• Disease causation is usually multifactorial.

• Influential variables can only be identified in a multivariable 

context.

(from http://www.cdc.gov/pcd/issues/2010/jul/10_0005.htm)
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What do we mean by a statistical model?

• A set of probability distributions on the sample space S.
(e.g. Cox and Hinkley, 1974)

• Statistical models summarize patterns of the data available for analysis.
(Steyerberg, 2009)

• A powerful tool for developing and testing theories by way of causal explanation, 

prediction, and description.
(Shmueli, 2010)

• A simplification or approximation of reality.
(Burnham, Anderson, 2002)

• A model represents, often in considerably idealized form, the data-generating

process. (Wikipedia)
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Is there such thing as a true model?

A ‘true model’ = a ‘true data generating mechanism’.

Pro: 

• Aristotle: ‘Nature operates in the shortest way possible.’

• Newton: ‘We are to admit no more causes of natural things than such as are both true and 

sufficient to explain their appearances.’

Contra:

• ‘We do not accept the notion that there is a simple “true model” in the biological sciences.’
(Burnham & Anderson, 2002)

• ‘We recognize that true models do not exist… A model will only reflect underlying patterns, 

and hence should not be confused with reality.’ (Steyerberg, 2009)

• ‘I started reading Annals of Statistics, and was bemused: Every article started with „Assume 

that the data are generated by the following model: …“ followed by mathematics exploring 

inference, hypothesis testing and asymptotics.‘ (Breiman, 2001)

• ‘All models are wrong, but some are useful.’ (Box)
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What do we mean by a statistical model?

• Statistical models are simple mathematical rules derived from empirical 

data describing the association between an outcome and several 

explanatory variables.

(Dunkler et al, 2014)

• They should be valid, practically useful, robust.

• ‘Simplicity is the ultimate sophistication.’ (Leonardo da Vinci)

• ‘Everything should be made as simple as possible, but not simpler.’ 

(~Einstein)
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Ockham? yes but it‘s hard to be simple
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• Ockham‘s razor is often used to justify ‚simpler models‘

• However, in search of simpler models, statistical analysis gets more complex!

• Model instability

• Multiple equally likely competing models

• Post-selection inference …

CeMSIIS - Section for Clinical Biometrics



To Explain or to Predict?

• Explanatory models

• Strong theory  interest in coefficients and inference.

• Testing and comparing existing causal theories.

• Predictive models

• Interest in accurate predictions of future observations.

• No concern about causality and confounding (association).

• Descriptive models

• capture the data structure parsimoniously: which factors affect the

outcome and how?

• expected prediction error = irreducible error + bias2 + variance
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Shmueli, 2010

Hastie et al 2009, p.223
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What models do we typically see?

Linear model 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝐾𝐾𝑋𝑋𝑘𝑘 + 𝜖𝜖 = 𝑋𝑋𝑋𝑋 + 𝜖𝜖~𝑁𝑁(0,𝜎𝜎)

Logistic model Pr 𝑌𝑌 = 1 = expit(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝐾𝐾𝑋𝑋𝑘𝑘)a

• . = exp 𝑋𝑋𝑋𝑋 /[1 + exp 𝑋𝑋𝑋𝑋 ]

Cox model ℎ 𝑋𝑋, 𝑡𝑡 = ℎ0 𝑡𝑡 exp 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝐾𝐾𝑋𝑋𝑘𝑘 = ℎ0 𝑡𝑡 exp(𝑋𝑋𝑋𝑋)

Linearity: linear combination of variables

• (Relaxation: splines, fractional polynomials, GAMs)

Additivity: sum of effects

• (Relaxation: include interactions, power functions, etc.)
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Interpretation of regression coefficients

• Consider the following models to explain %body fat:
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Sample size and events per variable (EPV)

• EPV = effective sample size / number of variables

• Logistic, Cox regression: 

effective sample size = number of less frequent outcomes, events

• EPV ≥ 15 (Harrell 2015, p. 72) 

• Number of candidate variables, not variables in the final model.

• Should be considered as lower bound!

• Rough guide, but many other quantities important

• Courvoisier et al 2011, van Smeden et al 2016

• When considering variable selection:

EPV = effective sample size / number of candidate variables !!!
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Significance criteria and stepwise procedures
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• Consider the nested models:

𝑀𝑀1: 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝜖𝜖
𝑀𝑀2: 𝑌𝑌 = 𝛾𝛾0 + 𝛾𝛾1𝑋𝑋1 + 𝜖𝜖

• Null hypothesis 𝛽𝛽2 = 0 implies that 𝛽𝛽0 = 𝛾𝛾0 and 𝛽𝛽1 = 𝛾𝛾1
• Likelihood ratio test fit both 𝑀𝑀1 and 𝑀𝑀2 Model comparison

• Step-up approximation: score test fit only 𝑀𝑀2 Forward selection

• Step-down approximation: Wald test fit only 𝑀𝑀1 Backward elimination

• With many 𝑋𝑋𝑗𝑗‘s, iterated testing could lead to stepwise selection of variables

• Are these iterated tests reliable?

• Unaccounted multiple testing!

• Testing if 𝛽𝛽𝑗𝑗 is relevant given the current set of adjustment variables
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Information criteria

• Approximate the ‘cross-validated’ expectation of log 𝐿𝐿

• by

• BIC = log 𝐿𝐿 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽̂𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − log 𝑛𝑛 𝐾𝐾/2 =>more stringent!

Hirotumi Akaike, 1927-2009, 
(from http://andrewgelman.com)

Model developed on 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,
Evaluated on 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.

Model developed on 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,
Evaluated on 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.

𝐾𝐾 … number of parameters
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𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[log𝐿𝐿 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽̂𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ]

AIC = log 𝐿𝐿 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝛽̂𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐾𝐾

Degrees of freedom
difference

AIC-equivalent
p-value in LR test

1 0.157

2 0.135

3 0.117

4 0.092

General: 1-pchisq(2*df, df)
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Penalized likelihood: regularized regression

• LASSO: minimize logL 𝛽𝛽 − 𝜆𝜆∑|𝛽𝛽𝑗𝑗|

• Imposes a penalty on the regression coefficients.

• Prerequisite: adequate standardization of effects.

• What we obtain

• A prediction formula with less error than ordinary least squares,

• Variable selection.

• What we do not obtain

• Unbiased regression coefficients,

New developments for inference: Taylor and Tibshirani, 2015

• Independence from transformations in X
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Variable selection algorithms
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Consequences
of variable selection
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• FIGURE 2 A schematic network 

of dependencies arising 

from variable selection. 

𝛽𝛽, regression coefficient; 

IV, independent variable; 

RMSE, root mean squared error
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RMSE of regression coefficients, unconditional
simulation with 15 covariates
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RMSE of regression coefficients, unconditional
simulation with 15 covariates
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RMSE of regression coefficients, unconditional
simulation with 15 covariates
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Accuracy of predictions
simulation with 15 covariates N=150 (10 EPV)
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Accuracy of predictions
simulation with 15 covariates N=750 (50 EPV)
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Model (in)stability
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• Variable selection generally introduces additional uncertainty

• Instability of selection

• Additional variance of regression coefficients

• Quantify this uncertainty using stability investigations:

• Repeat selection algorithm in B bootstrap resamples

• Compute (and report):

• Variable inclusion frequencies (VIF) of each covariate

• Model selection frequencies

• Assess bias: relative conditional bias (RCB)

• Assess variance inflation: root mean squared difference ratio (RMSDR)
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Shrinkage
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• Phenomenon: predictions from a model are too optimistic (too extreme)

• Caused by overfit (too many parameters) in too small samples

• Technique: anticipate the shrinkage by adjusting estimates

• Adjusted estimates of 𝛽𝛽 are shrunken towards 0

• Regularized regression: LASSO, ridge, …

• Post-estimation shrinkage: Sauerbrei 1999, Dunkler et al 2016

• Global shrinkage factor, equal for all 𝛽𝛽‘s

• Parameterwise shrinkage factors: shrinkage according to strength
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Recommendations: Generate initial working set
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• Defendable assumptions on the role of covariates from background knowledge:

• Previous studies in the same field

• Expert knowledge (from PI, the domain expert)

• Common sense

• Assumed relationships between covariates may be summarized in a DAG

• Some covariates not needed?

• Some effect estimates not interpretable?

• Background knowledge-based assessment of the effect strength

• ‚strong‘: covariate should be in the model

• ‚unclear‘: inclusion of a covariate debatable

This defines the global model.

This is where VS may be applied!
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Recommendations: to select or not to select, and how

Georg Heinze

24

• No variable selection on ‚strong‘ covariates!

• Variable selection on ‚unclear‘ covariates: if sample size allows
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Recommendations: what to do afterwards
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• Compute (and report) stability measures:

• Variable inclusion frequencies (VIF) of each covariate

• Model selection frequencies

• Assess bias: relative conditional bias (RCB)

• Assess variance inflation: root mean squared difference ratio (RMSDR)

• Sensitivity analysis:

• Changing decisions made in previous steps

• Initial set of covariates?

• Selection criterion?
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Recommendations: post-selection inference
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1. The effect of a covariate should be formally tested, but no theory exists which

variables should be included in the model

• Solution: Perform inference in the global model.

2. Strong theory supporting only a small number of models

• Solution: Perform multi-model inference with AIC 

(see Burnham Anderson 2002)

3. No strong theory for model building, but global model is implausible

• Solution: Multi-model inference with resampled 𝛽𝛽‘s

• Caveat: does not give formally valid confidence intervals (bias)

• Overestimation bias may be corrected by shrinkage
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Case study: body fat approximation

• Johnson‘s (1996) body fat data example

• Publicly available

• 251 males aged 21 to 81

• Response variable: %body fat (Siri formula), based on costly underwater density

measurement

• Predictors: age, height, weight, +10 circumference measures (highly correlated)

• First goal: approximation of %body fat

www.freedieting.com
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Conclusions
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• VS methods have always been seen controversially

• VS methods can incur instabilities

• Software needed to assess model instability –

repeat model building process in resamples

• In large samples, VS may reduce MSE and separate irrelevant information from the

model

• In small samples, VS may have disastrous effects on precision and inference; 

this may go unnoticed in standard software!

• Recommended reading: 

Heinze, Wallisch, Dunkler (2018) Variable selection – a review and recommendations for

the practicing statistician. Biometrical Journal 60:431-449. DOI: 

10.1002/bimj.201700067

• Recommended R package abe (Blagus, 2017) 

e-mail: Georg.heinze@meduniwien.ac.at Twitter: @Georg__Heinze
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