
SESSTIM, Faculty of Medical and Paramedical Sciences, Aix-Marseille University, Marseille, France
https://sesstim.univ-amu.fr/

Trees and Aggregating Methods
Ensemble Methods

Pr Roch Giorgi
roch.giorgi@univ-amu.fr

https://sesstim.univ-amu.fr/
mailto:roch.giorgi@univ-amu.fr


Ensemble Methods (1)

• Machine learning technique combining several base models in order to 
obtain better predictive performance

⁃ Predictions from multiple models are combined
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Ensemble Methods (2)

• Different independent estimates / decisions are combined into a final 
outcome

⁃ Models trained on random sample(s)

• Objective

⁃ To be more accurate than any single contribution

• Complexity of an ensemble learning model is higher than using a 
single model

⁃ More sophisticated technique for preparing the model, computational resources 
to train the model

⁃ Less reflection to understand why a specific prediction was made
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Ensemble Methods (3)

• Potential advantages

⁃ (can give) Better robustness  More stable predictions than a single model

• Variance in the predictions when using a machine learning algorithm, even though it is 
trained on the same data or even slightly different data

⁃ (can give) Better predictions  Importance of predictive performances

• Main families of ensemble learning algorithms
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⁃ Bagging

• Random forest

• Bagged decision trees

• …

⁃ Boosting

• Gradient boost

• AdaBoost

• XGBoost

• …

⁃ Staking

• Voting

• Weighted average

• Super learner

• …



Table of Contents

• Decision trees: Classification And Regression Trees (CART)

• Bootstrap Aggregating (Bagging)

• Random forests

• Boosting
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Decision Trees – Introduction

• Class of nonparametric predictive algorithms that work in regression 
(continuous outcome) and classification (categorical outcome)

• Can produce simple rules that are easy to interpret and visualize using 
tree diagrams

• General principle
⁃ Trees construction: partition the feature space into a number of smaller (non-
overlapping) regions with similar response values using a set of splitting rules

⁃ Predictions: by fitting a simpler model in each region

• Several algorithms
⁃ CART: Classification And Regression Trees

⁃ CHAID (Chi-squared Automatic Interaction Detection), ID3 (Iterative 
Dichotomiser 3)
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Decision Trees – Bases

• 𝑌 (continuous, categorical) feature to be explained by 𝑝 (continuous, 
categorical) explanatories features 𝑋1, … , 𝑋𝑝

• For the following

⁃ 𝑌: binary feature (0, 1)

⁃ 𝑋1, 𝑋2: continuous features

⁃ 𝑛 observations 𝑋1,1, 𝑋2,1, 𝑌1 , … , 𝑋1,𝑛, 𝑋2,𝑛, 𝑌𝑛
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→Find a partition of the observation that 
best separates the red points (𝑦𝑖 = 0) 
from the blue points (𝑦𝑖 = 1), 𝑖 = 1,… , 𝑛

𝑥1

𝑥2



CART Binary Tree

• Partitions the training data into homogeneous subgroups

⁃ Groups with similar response values

• Then fits a simple constant in each subgroup

⁃ Regression problem: mean of the within group response values

⁃ Classification problem: proportion of the within group response values

• The subgroups (also called nodes) are formed recursively using binary 
partitions formed by asking simple yes-or-no questions about each 
feature (e.g., is 𝑋 < 𝑠)

⁃ Partitions are created by successive divisions by means of hyperplanes 
orthogonal to the axes of ℝ𝑝 depending on the data 𝑋𝑖 , 𝑌𝑖

• Done until a suitable stopping criteria is satisfied

8© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University



CART Binary Tree – Bases (1)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 
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𝑥1

𝑥2



CART Binary Tree – Bases (2)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 
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𝑥1

𝑥2



CART Binary Tree – Bases (3)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 

11© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

𝑥1

𝑥2



CART Binary Tree – Bases (4)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 
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𝑥1

𝑥2



CART Binary Tree – Bases (5)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 
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𝑥1

𝑥2



CART Binary Tree – Bases (6)

• At each step, CART method proposes a new partition

⁃ A feature and a cut-off threshold/rule 
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𝑥1

𝑥2



CART Binary Tree – Bases (7)

• Classification rule

⁃ A majority vote is taken in the terminal nodes of the tree
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𝑥1

𝑥2



CART Binary Tree – Structure
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CART Binary Tree – Partitioning (1)

• Partitioning the observations into 2 according to a cut-off threshold/rule 
parallel to the axes and then iterating this binary separation process on 
the two groups

⁃ Objective: obtain the best cut-off threshold/rule for a fixed data set 
𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛

• At each step, choosing a feature 𝑗 among the 𝑝 explanatory features 
and a threshold 𝑠 in ℝ which split a node 𝒩 into two child nodes

⁃𝒩1 𝑗, 𝑠 = 𝑋 ∈ 𝒩|𝑋𝑗 ≤ 𝑠 and 𝒩2 𝑗, 𝑠 = 𝑋 ∈ 𝒩|𝑋𝑗 > 𝑠

• Data driven
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CART Binary Tree – Partitioning (2)

• Selection done by maximising an impurity function Ι

⁃ Measure the degree of heterogeneity of a node 𝒩

⁃ Takes high values for heterogeneous nodes: 𝑌 values are dispersed within the 
node

⁃ Takes small values for homogeneous nodes: 𝑌 values are close within the node

• Once Ι is defined, we will choose the couple 𝑗, 𝑠 that maximizes the 
impurity gain

⁃ ∆ Ι = 𝑃 𝒩 Ι 𝒩 − 𝑃 𝒩1 Ι 𝒩1 𝑗, 𝑠 + 𝑃 𝒩2 Ι 𝒩2 𝑗, 𝑠

where 𝑃 𝒩 is the proportion of observation in node 𝒩
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CART Binary Tree – Partitioning (3)

• Regression problem

⁃ Measure of impurity: variance node 𝒩

Ι 𝒩 =
1

|𝒩|
෍

𝑖:𝑋𝑖∈𝒩

𝑌𝑖 − ത𝑌𝒩
2

where ത𝑌𝒩 is the mean of 𝑌𝑖 in 𝒩

⁃ Partitioning: at each step, choosing the couple 𝑗, 𝑠 that minimizes

σ𝑋𝑖∈𝒩1 𝑗,𝑠 𝑌𝑖 − ത𝑌1
2 + σ𝑋𝑖∈𝒩2 𝑗,𝑠 𝑌𝑖 − ത𝑌2

2

where ത𝑌𝑘 =
1

|𝒩𝑘 𝑗,𝑠 |
σ𝑖:𝑋𝑖∈𝒩𝑘

𝑌𝑖, 𝑘 = 1,2
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CART Binary Tree – Partitioning (4)

• Classification problem (𝑌: binary feature (0, 1))

⁃ Measure of impurity: Gini impurity (Gini index)
Ι 𝒩 = 2𝑝 𝒩 1 − 𝑝 𝒩

where 𝑝 𝒩 is the proportion of 1 in 𝒩

⁃ Partitioning: at each step, choosing the couple 𝑗, 𝑠 that minimizes Ι𝑘 𝒩𝑘 , 𝑘
= 1,2

⁃ A node is “pure” if

• It contains many 0 and few 1 (or the reverse)

• The proportion of 1 is closed to 1 (or to 0)
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CART Binary Tree – Depth of a Tree (1)

• How deep (i.e., complex) should we make the tree?
⁃ The objective being to produce homogeneous groups it would seem natural to 
choose the tree with the maximum number of pure leaves

⁃ But, if we grow an overly complex tree, we tend to overfit to our training data 
resulting in poor generalization performance to new individuals
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CART Binary Tree – Depth of a Tree (1)

• How deep (i.e., complex) should we make the tree?
⁃ The objective being to produce homogeneous groups it would seem natural to 
choose the tree with the maximum number of pure leaves

⁃ But, if we grow an overly complex tree, we tend to overfit to our training data 
resulting in poor generalization performance to new individuals

• How to choose the right size tree?
⁃ There is a balance to be achieved in the depth and complexity of the tree to 
optimize predictive performance on future unseen data

• Complexity of a tree determined by its size or depth, which determines the bias/variance 
trade-off

⁃ Two primary approaches: early stopping and pruning

⁃ Classical approach: grow a very large, complex tree and then prune it back to 
find an optimal subtree
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CART Binary Tree – Early Stopping

• Tree depth
⁃ Limiting tree depth to a fixed number of levels

⁃ The shallower the tree (low number of levels) the less variance we have in our 
predictions

⁃ However, there is a risk of introducing too much bias as shallow trees do not 
capture the complex interactions and patterns in our data
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CART Binary Tree – Early Stopping

• Tree depth
⁃ Limiting tree depth to a fixed number of levels

⁃ The shallower the tree (low number of levels) the less variance we have in our 
predictions

⁃ However, there is a risk of introducing too much bias as shallow trees do not 
capture the complex interactions and patterns in our data

• Number of observations in any terminal node
⁃ Restricting it to an a priori value #, no split after this depth

⁃ Implies that each leaf nodes must contain at least # observations for predictions

⁃ Value #

• Small: high variance, poor generalizability. In the extreme, a single observation is captured in 
the leaf node and used as a prediction, resulting in an interpolation of the training data

• Large: restrict further splits therefore reducing variance
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CART Binary Tree – Pruning

• Grow a tree

• Prune it back to find an “optimal subtree”

⁃ Compare the performance of the two trees by estimating their probability of 
misclassification/score on a test sample

⁃ Use a cost/complexity parameter
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CART Binary Tree – Depth of a Tree (2)

1. Grow a very large, complex tree 𝒯𝑚𝑎𝑥

2. Select a sequence of nested trees: 𝒯𝑚𝑎𝑥 = 𝒯0 ⊃ 𝒯1 ⊃ ⋯ ⊃ 𝒯𝑘 by 
optimising a cost/complexity criterion that allows the trade-off 
between fit and complexity of the tree to be regulated 

3. Select a tree 𝒯 in this sub-sequence which optimises a performance 
criterion (minimizes the estimated risk)
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CART Binary Tree – Depth of a Tree (3)

• In rpart R package, values of the function print

⁃ CP: complexity parameter of the tree (CP   complexity )

⁃ nsplit: number of splits in the tree

⁃ rel.error: classification error from training data (adjustment error)

⁃ xerror: classification error from 10-fold cross-validation (prevision error)

⁃ xstd: standard deviation associated with the cross-validation error

• Choose the tree whose the classification error xerror is minimal
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• The final tree 𝒯 yields a partition ℝ𝑝 into |𝒯| terminal nodes 𝒩1, … ,𝒩|𝒯|

• Used for prediction for new individuals from a new test data

• Classification rule

⁃ ො𝑔 𝑥 = ቊ
1
0

• Score

⁃ መ𝑆 𝑥 = ෠𝑃 𝑌 = 1|𝑋 = 𝑥 =
1

𝑛
σ𝑖:𝑋𝑖∈𝒩 𝑥 1𝑌𝑖=1

• In rpart R package, using the function predict

• , otherwise

CART Binary Tree – Prediction for New Individuals
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• , if σ𝑖:𝑋𝑖∈𝒩 𝑥 1𝑌𝑖=1 ≥ σ𝑖:𝑋𝑖∈𝒩 𝑥 1𝑌𝑖=0



CART Binary Tree – Tree Performances

• For the final tree, to compare trees between them

• Indicators obtained on a new test data

⁃ Misclassification rates

⁃ ROC curves and AUC
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• The plot of the final tree allows easy interpretation of the model

• Feature importance measure allows to measure the importance of 
feature

⁃ It is possible that features that do not appear in the tree construction are 
important in explaining the feature of interest (a feature could be used multiple 
times in a tree)

⁃ The total reduction in the loss function across all splits by a feature are summed 
up and used as the total feature importance

⁃ After standardization, the most important feature has a value of 100 and the 
remaining features are scored based on their relative reduction in the loss 
function

CART Binary Tree – Feature Interpretation
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• Quite simple method, relatively easy to use (no particular pre-
processing requirements, such as monotonic transformation, dealing 
with outliers,…)

• For regression and classification problems

• Interpretable results (difficulty increase with the depth of the tree)

• Drawback

⁃ Known to be unstable, sensitive to slight perturbations of the sample

⁃ Do not often achieve state-of-the-art predictive accuracy

CART Binary Tree – Conclusion
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Bagging – Introduction

• Bootstrap Aggregating

⁃ One of the first ensemble algorithms machine learning practitioners learn

⁃ Designed to improve the stability and accuracy of regression and classification 
algorithms

⁃ Instead of constructing a single estimator, constructing, on bootstrap samples, 

a large number 𝐵, 𝑔1, … , 𝑔𝐵, then aggregating them, ො𝑔 =
1

𝐵
σ𝑘=1
𝐵 𝑔𝑘 𝑥

⁃ Helps to reduce variance and minimize overfitting by model averaging

⁃ Usually applied to decision tree methods, but can be used with any type of 
method
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Bagging – Context

• As in previous part, 𝑌 (continuous, categorical) feature to be 
explained by 𝑝 (continuous, categorical) explanatories features 
𝑋1, … , 𝑋𝑝

• Regression or classification problem

• For further simplification, we will consider the regression problem

⁃ Notations

• 𝑋, 𝑌 random pair of values in ℝ𝑑 ×ℝ

• 𝒟𝑛 = 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 a 𝑛 –sample 𝑖. 𝑖. 𝑑. with same probability distribution as 𝑋, 𝑌
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Bagging – Interest

• Regression model

⁃ 𝑌 = 𝑚 𝑋 + 𝜀

• One notes

⁃ ෝ𝑚𝐵 𝑥 =
1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥

⁃ an estimator of 𝑚 obtained by aggregating 𝐵 estimators 𝑚1, … ,𝑚𝐵

• Reminder

⁃ ෝ𝑚𝐵 𝑥 = ෝ𝑚𝐵 𝑥; 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 , and 𝑚𝑘 𝑥 = 𝑚𝑘 𝑥; 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 are 
random variables

• Therefore

⁃ Interest in aggregation measured by comparing the performance of ෝ𝑚𝐵 𝑥 with 
that of 𝑚𝑘 𝑥 , 𝑘 = 1,… , 𝐵 (e.g. bias and variance of these estimators)
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Aggregating – Bias and Variance (1)

Hypothesis: the random variables 𝑚1, … ,𝑚𝐵 are 𝑖. 𝑖. 𝑑.

• Bias

⁃ Ε ෝ𝑚𝐵 𝑥 = Ε 𝑚𝑘 𝑥

Aggregating does not change the bias
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Aggregating – Bias and Variance (1)

Hypothesis: the random variables 𝑚1, … ,𝑚𝐵 are 𝑖. 𝑖. 𝑑.

• Bias

⁃ Ε ෝ𝑚𝐵 𝑥 = Ε 𝑚𝑘 𝑥

Aggregating does not change the bias

• Variance

⁃ V ෝ𝑚𝐵 𝑥 =
1

𝐵
V 𝑚𝑘 𝑥

Aggregating make the variance tend toward 0
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Aggregating – Bias and Variance (2)

• Warning

⁃ The estimators 𝑚1, … ,𝑚𝐵 being obtained on the same sample, the hypothesis 
independence is not suitable

• Reduction of the dependency between estimators 𝑚𝑘, 𝑘 = 1,… , 𝐵
introducing new sources of randomness

⁃ Bootstrap samples
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1 2 3 4 5

Initial sample

5 1 4 5 2 𝑚1

1 5 3 2 5 𝑚𝟐

3 5 4 2 3 𝑚𝑩

Bootstrap samples

… … Aggregating ෝ𝑚𝐵 𝑥 =
1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥→ →



Bagging – Principle (1)

• 𝑚𝑘 will not be built on the 𝒟𝑛 = 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 sample, but on 
bootstrap samples of 𝒟𝑛

• Inputs
⁃ 𝑥 ∈ ℝ𝑑 the observation to be predicted, 𝒟𝑛 the sample

⁃ A regressor (CART, 1-nearest neighbours (and other small values),…)

⁃ 𝐵 number of estimators that are aggregated

• For 𝑘 = 1,… , 𝐵
⁃ Draw a bootstrap sample in 𝒟𝑛

⁃ Fit the regressor on this bootstrap sample 𝑚𝑘 𝑥

• Output

⁃ Estimator ෝ𝑚𝐵 𝑥 =
1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥
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Bagging – Drawing of Bootstrap Sample

• Bootstrap draw are

⁃ Represented by 𝐵 random variables 𝜃𝑘 = 1,… , 𝐵

⁃ Carried out according to the same law and independently

• 𝜃1, … , 𝜃𝐵 are 𝑖. 𝑖. 𝑑. of the same law of 𝜃

• 2 technics

⁃ Drawn of 𝑛 observations with replacement

⁃ Drawn of 𝑙 < 𝑛 observations without replacement

• Consequence

⁃ Aggregated estimators includes 2 sources of randomness (sample and 
bootstrap draw): 𝑚𝑘 𝑥 = 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛
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Bagging – Principle (2)

• Choice of the number of iterations

• Choice of the regressor
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Bagging – Choice of the Number of Iterations

• According to the law of large numbers
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lim
𝐵→∞

ෝ𝑚𝐵 𝑥 = lim
𝐵→∞

1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥 = lim

𝐵→∞

1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥, 𝜃𝑘 , 𝒟𝑛

= Ε𝜃 𝑚 𝑥, 𝜃, 𝒟 = ഥ𝑚 𝑥,𝒟𝑛 𝑝. 𝑠|𝒟𝑛



Bagging – Choice of the Number of Iterations

• According to the law of large numbers
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When 𝐵 is large, ෝ𝑚𝐵 stabilise towards the bagging estimator ഥ𝑚 𝑥,𝒟𝑛

 The number of iterations 𝐵 is not a parameter to be calibrated. Take it 
as large as possible according to the computation time

lim
𝐵→∞

ෝ𝑚𝐵 𝑥 = lim
𝐵→∞

1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥 = lim

𝐵→∞

1

𝐵
σ𝑘=1
𝐵 𝑚𝑘 𝑥, 𝜃𝑘 , 𝒟𝑛

= Ε𝜃 𝑚 𝑥, 𝜃, 𝒟 = ഥ𝑚 𝑥,𝒟𝑛 𝑝. 𝑠|𝒟𝑛



Bagging – Choice of the Regressor

• We have
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Ε ෝ𝑚𝐵 𝑥 = Ε 𝑚𝑘 𝑥, 𝜃𝑘 , 𝒟𝑛

V ෝ𝑚𝐵 𝑥 = 𝜌 𝑥 V 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛 −
1−𝜌 𝑥

𝐵
V 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛

where 𝜌 𝑥 =corr 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛 , 𝑚 𝑥, 𝜃𝑘′ , 𝒟𝑛 for𝑘 ≠ 𝑘′



Bagging – Choice of the Regressor

• We have
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 Bagging does not change the bias

 𝐵 large → V ෝ𝑚𝐵 𝑥 ≈ 𝜌 𝑥 V 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛 → the variance decreases 
as the correlation between the predictors decreases

 Need to aggregate estimators that are sensitive to small perturbations 
in the sample, e.g. trees

Ε ෝ𝑚𝐵 𝑥 = Ε 𝑚𝑘 𝑥, 𝜃𝑘 , 𝒟𝑛

V ෝ𝑚𝐵 𝑥 = 𝜌 𝑥 V 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛 −
1−𝜌 𝑥

𝐵
V 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛

where 𝜌 𝑥 =corr 𝑚 𝑥, 𝜃𝑘 , 𝒟𝑛 , 𝑚 𝑥, 𝜃𝑘′ , 𝒟𝑛 for𝑘 ≠ 𝑘′



• For algorithms that are stable or have high bias, bagging offers less 
improvement on predicted outputs since there is less variability (e.g., 
bagging a linear regression model will effectively just return the original 
predictions for large enough 𝐵)

Bagging – Remarks (1)
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• For algorithms that are stable or have high bias, bagging offers less 
improvement on predicted outputs since there is less variability (e.g., 
bagging a linear regression model will effectively just return the original 
predictions for large enough 𝐵)

• A benefit to creating ensembles via bagging, based on resampling with 
replacement, is that it can provide its own internal estimate of 
predictive performance with the out-of-bag (OOB) sample (see latter)

⁃ The OOB sample can be used to test predictive performance

⁃ The results are generally comparable to those of the 𝑘-fold cross-validation, 
provided that the data set is large enough (𝑛 > 1000)

As the data sets become larger and the bagging iterations increase, it is 
common to use the OOB error estimate as a proxy for predictive performance

Bagging – Remarks (1)
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• Computation

⁃ Bagging can become computationally intense as the number of iterations 
increases

⁃ The process of bagging involves fitting models to each of the bootstrap samples 
which are completely independent of one another

⁃ As a solution, each model can be trained in parallel and the results aggregated in 
the end for the final model

Bagging – Remarks (2)
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• Computation

⁃ Bagging can become computationally intense as the number of iterations 
increases

⁃ The process of bagging involves fitting models to each of the bootstrap samples 
which are completely independent of one another

⁃ As a solution, each model can be trained in parallel and the results aggregated in 
the end for the final model

• Feature interpretation

⁃ Models that are normally perceived as interpretable are no longer so

⁃ A solution, use of measure of feature importance 

Bagging – Remarks (2)
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• Bagging trees

⁃ Trees in bagging are not completely independent of each other since all the 
original features are considered at every split of every tree

⁃ Trees from different bootstrap samples typically have similar structure to each 
other (especially at the top of the tree) due to any underlying strong 
relationships

⁃ Known as “tree correlation” which prevents bagging from further reducing the 
variance of the base learner

⁃ A solution, random forests which extend and improve upon bagged decision 
trees by reducing this correlation and thereby improving the accuracy of the 
overall ensemble

Bagging – Remarks (3)
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• A random forest is defined by a collection of de-correlated trees

• Aggregates trees built on bootstrap samples

• Reduce tree correlation by injecting more randomness into the tree-
growing process

• Léo Breiman’s algorithm has largely become the authoritative procedure

⁃ To reduce the correlation between the trees being aggregated, proposes to select 
the best “feature” from a set composed of only 𝑚 features randomly chosen from 
the initial 𝑑 features

Random Forests – Introduction 

50© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University



Random Forests – Algorithm

• Inputs

⁃ 𝑥 ∈ ℝ𝑑 the observation to be predicted, 𝒟𝑛 the sample

⁃ 𝐵 number of trees; 𝑛𝑚𝑎𝑥 maximum number of observations per node

⁃𝑚 ∈ 1,… , 𝑑 the number of candidate features to split a node 

• For 𝑘 = 1,… , 𝐵

⁃ Draw a bootstrap sample in 𝒟𝑛

⁃ Grow a CART regression/classification tree on the bootstrap sample, each split 
being selected by minimizing the CART cost function on a set of 𝑚 features 
randomly chosen among the 𝑑. We denotes 𝒯 . , 𝜃𝑘 , 𝒟𝑛 the resulting tree

• Output

⁃ Estimator ෠𝒯𝐵 𝑥 =
1

𝐵
σ𝑘=1
𝐵 𝒯𝑘 𝑥
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• Aggregation step consist of

⁃ A majority vote (classification problem)

⁃ A mean (regression problem)

• 2 sources of randomness in 𝜃𝑘
⁃ Bootstrapping

⁃𝑚 features randomly selected at each step of the tree grow

• Estimator known to provide accurate estimates on complex data (many 
variables, missing data,...)

• Estimator not very sensitive to the choice of its parameters 𝐵, 𝑛𝑚𝑎𝑥 , 𝑚

• Implemented on most statistical software (RandomForest function 
from the randomForest R package)

Random Forests – Remarks
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• Interest in bagging: to reduce the variance of the estimators being 
aggregated

• Bias is not improved by bagging  aggregate estimators with a low 
bias (unlike boosting)

• Deep trees, with few observations in terminal nodes

⁃ By default in RandomForest: 𝑛𝑚𝑎𝑥 = 5 in regression and in 1 classification

⁃ Tree is complete (but do not prune)

Random Forests – Choice of 𝐵
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• Related to the correlation between the trees 𝜌 𝑥

• 𝑚 has an influence on the bias/variance trade-off of the forest

⁃𝑚 

• The tendency is to move towards a "random" choice of tree-cutting features  trees are 
more and more different  𝜌 𝑥   the variance of the forest decreases

⁃ Inversely when 𝑚 

• Recommendation

⁃𝑚 should be considered a tuning parameter

⁃ Compare the performance of the forest for several values of 𝑚

• Comment

⁃ By default, 𝑚 = Τ𝑑 3 in regression, and 𝑑 in classification

Random Forests – Choice of 𝑚
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• As with other classifiers and regressors, it is necessary to define criteria 
to measure the performance of random forests

• Examples

⁃ Prediction error Ε 𝑌 − ෠𝑇𝐵 𝑋
2

in regression

⁃ Probability error 𝑃 𝑌 ≠ ෠𝑇𝐵 𝑋 in classification

• As with other methods, these criteria can be assessed by 
learning/validation or cross-validation

• The bootstrap phase of the bagging algorithms makes it possible to 
define a method for estimating these criteria: Out Of Bag (OOB) 
method

Random Forests – Performance Measurement
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• OOB method consists in using the observations that are not in the 
bootstrap samples as a validation sample to estimate the performance 
of the forest

• Avoids the need for cross-validation to estimate the prediction 
performance

Performance Measurement – Out Of Bag (1)
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https://en.wikipedia.org/wiki/Out-of-bag_error

https://en.wikipedia.org/wiki/Out-of-bag_error


• For each observation 𝑋𝑖 , 𝑌𝑖 of 𝒟𝑛, 𝒪𝐵 is the set of trees in the forest 
that do not contain this observation in their bootstrap sample

• The prediction of 𝑌 at point 𝑋𝑖 is done according to

⁃ ෠𝑌𝑖 𝑥 =
1

|𝒪𝐵|
σ𝑘∈𝒪𝐵

𝒯 𝑋𝑖 , 𝜃𝑘, 𝒟𝑛

• OOB estimators

⁃ Prediction error is estimated by 
1

𝑛
σ𝑖=1
𝑛 ෠𝑌𝑖 − 𝑌𝑖

2

⁃ Probability error is estimated by 
1

𝑛
σ𝑖=1
𝑛 1 ෠𝑌𝑖≠𝑌𝑖

Performance Measurement – Out Of Bag (2)
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• Example

Performance Measurement – Out Of Bag (3)
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5 1 4 5 2 𝑚1

4 5 3 2 5 𝑚𝟐

3 5 3 4 3 𝑚𝟑

4 3 3 1 5 𝑚𝟒

⁃ Samples 2 and 3 do not contain the first observation, so ෠𝑌1 =
1

2
𝑚2 𝑋1 +𝑚3 𝑋1

⁃ The same applies to all observations  ෠𝑌2, … , ෠𝑌4

⁃ The error is estimated by 
1

4
σ𝑖=1
4 ෠𝑌𝑖 − 𝑌𝑖

2



• Random forests often seen as a black box lacking interpretability 
compared to parametric models, such as the logistic model

• Importance variable

⁃ Allows to measure the importance of the variables in the model

⁃ Like the OOB error, it is based on the fact that not all observations are used to 
construct the forest trees

Random Forests – Importance Variable (1)
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• Let 𝑂𝑂𝐵𝑘 the OOB sample associated with the 𝑘𝑡ℎ tree, containing 
observations that are not in the 𝑘𝑡ℎ bootstrap sample

Random Forests – Importance Variable (2)
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• Let 𝑂𝑂𝐵𝑘 the OOB sample associated with the 𝑘𝑡ℎ tree, containing 
observations that are not in the 𝑘𝑡ℎ bootstrap sample

• Let 𝐸𝑂𝑂𝐵𝑘 be the prediction error of tree 𝑘𝑡ℎ measured on this sample

⁃ 𝐸𝑂𝑂𝐵𝑘 =
1

|𝑂𝑂𝐵𝑘|
σ𝑖∈𝑂𝑂𝐵𝑘

𝑇 𝑋𝑖 , 𝜃𝑘 , 𝒟𝑛 − 𝑌𝑖
2

Random Forests – Importance Variable (2)
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• Let 𝑂𝑂𝐵𝑘 the OOB sample associated with the 𝑘𝑡ℎ tree, containing 
observations that are not in the 𝑘𝑡ℎ bootstrap sample

• Let 𝐸𝑂𝑂𝐵𝑘 be the prediction error of tree 𝑘𝑡ℎ measured on this sample

⁃ 𝐸𝑂𝑂𝐵𝑘 =
1

|𝑂𝑂𝐵𝑘|
σ𝑖∈𝑂𝑂𝐵𝑘

𝑇 𝑋𝑖 , 𝜃𝑘 , 𝒟𝑛 − 𝑌𝑖
2

• Let 𝑂𝑂𝐵𝑘
𝑗

the sample 𝑂𝑂𝐵𝑘 in which the values of feature 𝑗 have been 

randomly perturbed and 𝐸𝑂𝑂𝐵𝑘
𝑗

the prediction error of tree 𝑘 measured on this 
sample

⁃ 𝐸𝑂𝑂𝐵𝑘
𝑗

=
1

|𝑂𝑂𝐵𝑘
𝑗
|
σ
𝑖∈𝑂𝑂𝐵𝑘

𝑗 𝑇 𝑋𝑖
𝑗
, 𝜃𝑘 , 𝒟𝑛 − 𝑌𝑖

2

Random Forests – Importance Variable (2)
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• Let 𝑂𝑂𝐵𝑘 the OOB sample associated with the 𝑘𝑡ℎ tree, containing 
observations that are not in the 𝑘𝑡ℎ bootstrap sample

• Let 𝐸𝑂𝑂𝐵𝑘 be the prediction error of tree 𝑘𝑡ℎ measured on this sample

⁃ 𝐸𝑂𝑂𝐵𝑘 =
1

|𝑂𝑂𝐵𝑘|
σ𝑖∈𝑂𝑂𝐵𝑘

𝑇 𝑋𝑖 , 𝜃𝑘 , 𝒟𝑛 − 𝑌𝑖
2

• Let 𝑂𝑂𝐵𝑘
𝑗

the sample 𝑂𝑂𝐵𝑘 in which the values of feature 𝑗 have been 

randomly perturbed and 𝐸𝑂𝑂𝐵𝑘
𝑗

the prediction error of tree 𝑘 measured on this 
sample

⁃ 𝐸𝑂𝑂𝐵𝑘
𝑗

=
1

|𝑂𝑂𝐵𝑘
𝑗
|
σ
𝑖∈𝑂𝑂𝐵𝑘

𝑗 𝑇 𝑋𝑖
𝑗
, 𝜃𝑘 , 𝒟𝑛 − 𝑌𝑖

2

• The importance of feature 𝑗 is

⁃ 𝐼𝑚𝑝 𝑋𝑗 =
1

𝐵
σ𝑘=1
𝐵 𝐸𝑂𝑂𝐵𝑘

𝑗
− 𝐸𝑂𝑂𝐵𝑘

Random Forests – Importance Variable (2)
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 Features with the largest average decrease in 
accuracy are considered most important



• They are a very powerful ready-made algorithm that often offers high 
predictive accuracy

• They have all the advantages of decision trees and bagging, and greatly 
reduce instability and correlation between trees

• Due to the added split feature selection attribute, they are also faster 
than bagging as they have a smaller feature search space at each tree 
split

• They will still suffer from slow computational speed as the data sets get 
larger, but modern implementations allow for parallelization to improve 
training time

Random Forests – Remarks
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• Algorithms of gradient boosting provide answer to regression and 
classification problems

• Whereas random forests build an ensemble of deep independent trees, 
gradient boosting build an ensemble of shallow trees in sequence with 
each tree learning and improving on the previous one

• Although shallow trees by themselves are rather weak predictive 
models, they can be “boosted” to produce a powerful “committee”

• Bagging and random forests work by combining multiple models 
together into an overall ensemble

Boosting – Introduction (1)
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• Main idea: to add new models to the ensemble sequentially

• Boosting attacks the bias-variance trade-off by starting with a weak model

⁃ e.g., a decision tree with only a few splits

• Then, sequentially boosts its performance by continuing to build new

⁃ e.g., new trees

• Where each new model in the sequence tries to fix up where the previous 
one made the biggest mistakes

⁃ i.e., in each new tree in the sequence, it will focus on the training rows where the 
previous tree had the largest prediction errors

Boosting – Introduction (2)
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• 𝑋, 𝑌 random pair of values in ℝ𝑑 × 𝒴

• Given 𝒢 a family of rules, we want to find the best rule in 𝒢

⁃ Choose the rule that minimise a loss function, for example ℛ 𝑔 = Ε ℓ 𝑌, 𝑔 𝑥

• Problem

⁃ The loss function is not calculable

• Idea

⁃ Choose the rule that minimise the empirical version of the loss function

⁃ℛ 𝑔 =
1

𝑛
σ𝑖=1
𝑛 ℓ 𝑌𝑖 , 𝑔 𝑋𝑖

⁃ where ℓ 𝑦, 𝑔 𝑥 measure the error between the prediction 𝑔 𝑥 and the 
observation 𝑦

Boosting – Principle (1)
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• Problem
⁃ No explicit solution  need to find an algorithm to reach the solution

Boosting – Principle (2)
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• Problem
⁃ No explicit solution  need to find an algorithm to reach the solution

• Idea
⁃ To use a gradient descent algorithm (iterative algorithm)

• Very generic optimization algorithm capable of finding optimal solutions to a wide range of 
problems

• Adjusts the parameter(s) iteratively in order to minimize a loss function

• Measures the local gradient of the loss function for a given set of parameters and takes 
steps in the direction of the descending gradient

• The minimum is reach once the gradient is zero

Boosting – Principle (2)
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• Problem
⁃ No explicit solution  need to find an algorithm to reach the solution

• Idea
⁃ To use a gradient descent algorithm (iterative algorithm)

• Very generic optimization algorithm capable of finding optimal solutions to a wide range of 
problems

• Adjusts the parameter(s) iteratively in order to minimize a loss function

• Measures the local gradient of the loss function for a given set of parameters and takes 
steps in the direction of the descending gradient

• The minimum is reach once the gradient is zero

Boosting – Principle (2)

70© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Boehmke B, Greenwel BM. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series.



• adaboost

⁃ For binary classification

⁃ Loss function ℓ 𝑦, 𝑔 𝑥 = 𝑒𝑥𝑝 −𝑦𝑔 𝑥 with 𝑦 ∈ −1,1

• logiboost

⁃ For binary classification

⁃ Loss function ℓ 𝑦, 𝑔 𝑥 = 𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 −𝑦𝑔 𝑥 with 𝑦 ∈ −1,1

• L2-boosting

⁃ For regression

⁃ Loss function ℓ 𝑦, 𝑔 𝑥 = 𝑦 − 𝑔 𝑥 2 with 𝑦 ∈ ℝ

Boosting – Classical Algorithms

71© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University



• Returns a recursive sequence of estimators 𝑔𝑚 𝑚 such as

•𝑔𝑚 𝑥 = 𝑔𝑚−1 𝑥 + 𝜆𝑔𝑚 𝑥

⁃ Where the learning rate, regularization parameter, 𝜆 ∈ 0,1 and 𝑔𝑚 is “weak” rule

⁃ Most often, these “weak” rules are trees with very few splits

• Choose an estimator (or estimation rule) in the sequence 𝑔𝑚 𝑚

• Estimating performance of each 𝑔𝑚 by cross-validation methods

• Iteratively from 𝑚 = 1 to a choose value M

• Remark

⁃ Although boosting, like bagging, can be applied to any type of model, it is often 
most effectively applied to decision trees

Boosting – Algorithms
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1. Fit a decision tree to the data: 𝒯1 𝑥 = 𝑦

2. Fit the next decision tree to the residuals of the previous: 𝑈1 𝑥 =
𝑦 − 𝒯1 𝑥

3.Add this new tree to the algorithm (updating): 𝒯2 𝑥 = 𝒯1 𝑥 + 𝑈1 𝑥

4. Fit the next decision tree to the residuals of 𝒯2: 𝑈2 𝑥 = 𝑦 − 𝒯2 𝑥

5.Add this new tree to the algorithm (updating): 𝒯3 𝑥 = 𝒯2 𝑥 + 𝑈2 𝑥

6.Continue this process until cross-validation (or other) indicate to stop

Boosting – Boosted Trees
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• Simple example

⁃ A true predictor 𝑥 has a true underlying 
sine wave relationship (blue line) with 𝑦
along with some irreducible error

⁃ The first tree fit in the series is a single 
decision stump

⁃ Each successive decision stump thereafter is 
fit to the previous one’s residuals

Boosting – Boosted Trees
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• Simple example

⁃ A true predictor 𝑥 has a true underlying 
sine wave relationship (blue line) with 𝑦
along with some irreducible error

⁃ The first tree fit in the series is a single 
decision stump

⁃ Each successive decision stump thereafter is 
fit to the previous one’s residuals

⁃ Initially there are large errors, but each 
additional decision stump in the sequence 
makes a small improvement in different areas 
across the feature space where errors still 
remain

Boosting – Boosted Trees
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• Simple example

⁃ A true predictor 𝑥 has a true underlying 
sine wave relationship (blue line) with 𝑦
along with some irreducible error

⁃ The first tree fit in the series is a single 
decision stump

⁃ Each successive decision stump thereafter is 
fit to the previous one’s residuals

⁃ Initially there are large errors, but each 
additional decision stump in the sequence 
makes a small improvement in different areas 
across the feature space where errors still 
remain

⁃ 0 to 1024 successive trees are added

Boosting – Boosted Trees
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• At each iteration

⁃ The bias decreases 

⁃ The variance increases 

 Importance to use weak rules (weak learner): large bias and small variance 
(shallow trees)

The algorithm overfits if the number of iterations is (too) large

Boosting – Remark
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• Choice of 𝑚 is crucial for boosting estimators

⁃ Overfitting if 𝑚 is too large (estimators with low bias but large variance); 
conversely if 𝑚 is small

• The regularization parameter 𝜆 represents the step size of the decrease 
of the gradient (learning rate) 

⁃ Is linked to 𝑚: large value of 𝜆 will require few iterations; conversely if 𝜆 is small

• In practice

⁃ 2 or 3 (small) values are considered for 𝜆 (0.1, 0.01)

⁃ For each 𝜆, the best 𝑚 is chosen using technics such as cross-validation and the 
same loss function

Boosting – Choice of 𝑚 and 𝜆
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• Random forests and boosting algorithms aggregate trees

• To be effective, trees must be weak learner, therefore poorly performing 
tress

⁃ Random forest: grow trees with large variance and small bias

⁃ Boosting: shallow trees with small variance and large bias

• Aggregating

⁃ Random forest: variance reduction

⁃ Boosting: bias reduction

Conclusion
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