

# Trees and Aggregating Methods Ensemble Methods

La science pour la santé



Aix\*Marseille Université Socialement engagée

Pr Roch Giorgi roch.giorgi@univ-amu.fr

SESSTIM, Faculty of Medical and Paramedical Sciences, Aix-Marseille University, Marseille, France https://sesstim.univ-amu.fr/



# Ensemble Methods (1)

- Machine learning technique combining several base models in order to obtain better predictive performance
  - Predictions from multiple models are combined



Simple ensemble technique

🙀 © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

# Ensemble Methods (2)

- Different independent estimates / decisions are combined into a final outcome
  - Models trained on random sample(s)
- Objective
  - To be more accurate than any single contribution
- Complexity of an ensemble learning model is higher than using a single model
  - More sophisticated technique for preparing the model, computational resources to train the model
  - Less reflection to understand why a specific prediction was made

# Ensemble Methods (3)

- Potential advantages
  - (can give) Better robustness  $\leftrightarrow$  More stable predictions than a single model
    - Variance in the predictions when using a machine learning algorithm, even though it is trained on the same data or even slightly different data
  - (can give) Better predictions ↔ Importance of predictive performances
- Main families of ensemble learning algorithms
  - Bagging

• ...

- Random forest
- Bagged decision trees

- Boosting
  - Gradient boost
  - AdaBoost
  - XGBoost

. . .

- Staking
  - Voting

. . .

- Weighted average
- Super learner



## **Table of Contents**

- Decision trees: Classification And Regression Trees (CART)
- Bootstrap Aggregating (Bagging)
- Random forests
- Boosting



## **Decision Trees – Introduction**

- Class of nonparametric predictive algorithms that work in regression (continuous outcome) and classification (categorical outcome)
- Can produce simple rules that are easy to interpret and visualize using tree diagrams
- General principle
  - Trees construction: partition the feature space into a number of smaller (nonoverlapping) regions with similar response values using a set of splitting rules
  - Predictions: by fitting a simpler model in each region
- Several algorithms
  - CART: Classification And Regression Trees
  - CHAID (Chi-squared Automatic Interaction Detection), ID3 (Iterative Dichotomiser 3)



## **Decision Trees – Bases**

- *Y* (continuous, categorical) feature to be explained by *p* (continuous, categorical) explanatories features *X*<sub>1</sub>, ..., *X*<sub>*p*</sub>
- For the following
  - Y: binary feature (0, 1)
  - X<sub>1</sub>, X<sub>2</sub>: continuous features
  - *n* observations  $(X_{1,1}, X_{2,1}, Y_1), \dots, (X_{1,n}, X_{2,n}, Y_n)$
  - → Find a partition of the observation that best separates the red points  $(y_i = 0)$ from the blue points  $(y_i = 1), i = 1, ..., n$



## **CART Binary Tree**

• Partitions the training data into homogeneous subgroups

- Groups with similar response values
- Then fits a simple *constant* in each subgroup
  - Regression problem: mean of the within group response values
  - Classification problem: proportion of the within group response values
- The subgroups (also called nodes) are formed recursively using binary partitions formed by asking simple yes-or-no questions about each feature (e.g., is *X* < *s*)
  - Partitions are created by successive divisions by means of hyperplanes orthogonal to the axes of  $\mathbb{R}^p$  depending on the data  $(X_i, Y_i)$
- Done until a suitable stopping criteria is satisfied

 $\odot$  Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

## CART Binary Tree – Bases (1)

• At each step, CART method proposes a new partition

- A feature and a cut-off threshold/rule





C Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

## CART Binary Tree – Bases (2)

• At each step, CART method proposes a new partition

- A feature and a cut-off threshold/rule





© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

## CART Binary Tree – Bases (3)

• At each step, CART method proposes a new partition





## CART Binary Tree – Bases (4)

• At each step, CART method proposes a new partition





## CART Binary Tree – Bases (5)

• At each step, CART method proposes a new partition



## CART Binary Tree – Bases (6)

• At each step, CART method proposes a new partition





## CART Binary Tree – Bases (7)

Classification rule

- A majority vote is taken in the terminal nodes of the tree





Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

#### **CART Binary Tree – Structure**





## CART Binary Tree – Partitioning (1)

- Partitioning the observations into 2 according to a cut-off threshold/rule parallel to the axes and then iterating this binary separation process on the two groups
  - Objective: obtain the best cut-off threshold/rule for a fixed data set  $(X_1, Y_1), \dots, (X_n, Y_n)$
- At each step, choosing a feature j among the p explanatory features and a threshold s in  $\mathbb{R}$  which split a node  $\mathcal{N}$  into two child nodes

$$\mathcal{N}_1(j,s) = \{ X \in \mathcal{N} | X_j \le s \} \text{ and } \mathcal{N}_2(j,s) = \{ X \in \mathcal{N} | X_j > s \}$$

• Data driven

## CART Binary Tree – Partitioning (2)

- Selection done by maximising an impurity function I
  - Measure the degree of heterogeneity of a node  $\ensuremath{\mathcal{N}}$
  - Takes high values for heterogeneous nodes: Y values are dispersed within the node
  - Takes small values for homogeneous nodes: Y values are close within the node
- Once I is defined, we will choose the couple (*j*, *s*) that maximizes the impurity gain

 $\Delta(\mathbf{I}) = P(\mathcal{N})\mathbf{I}(\mathcal{N}) - \left(P(\mathcal{N}_1)\mathbf{I}(\mathcal{N}_1(j,s)) + P(\mathcal{N}_2)\mathbf{I}(\mathcal{N}_2(j,s))\right)$ 

where  $P(\mathcal{N})$  is the proportion of observation in node  $\mathcal{N}$ 

## CART Binary Tree – Partitioning (3)

Regression problem

- Measure of impurity: variance node  ${\mathcal N}$ 

$$I(\mathcal{N}) = \frac{1}{|\mathcal{N}|} \sum_{i:X_i \in \mathcal{N}} (Y_i - \overline{Y}_{\mathcal{N}})^2$$

where  $\overline{Y}_{\mathcal{N}}$  is the mean of  $Y_i$  in  $\mathcal{N}$ 

- Partitioning: at each step, choosing the couple (*j*, *s*) that minimizes

$$\sum_{X_i \in \mathcal{N}_1(j,s)} (Y_i - \overline{Y}_1)^2 + \sum_{X_i \in \mathcal{N}_2(j,s)} (Y_i - \overline{Y}_2)^2$$
  
where  $\overline{Y}_k = \frac{1}{|\mathcal{N}_k(j,s)|} \sum_{i:X_i \in \mathcal{N}_k} Y_i$ ,  $k = 1,2$ 

## CART Binary Tree – Partitioning (4)

• Classification problem (Y: binary feature (0, 1))

- Measure of impurity: Gini impurity (Gini index)

 $I(\mathcal{N}) = 2p(\mathcal{N})(1 - p(\mathcal{N}))$ 

where  $p(\mathcal{N})$  is the proportion of 1 in  $\mathcal{N}$ 

- Partitioning: at each step, choosing the couple (j, s) that minimizes  $I_k(\mathcal{N}_k)$ , k = 1,2
- A node is "pure" if
  - It contains many 0 and few 1 (or the reverse)
  - The proportion of 1 is closed to 1 (or to 0)

## CART Binary Tree – Depth of a Tree (1)

- How deep (i.e., complex) should we make the tree?
  - The objective being to produce homogeneous groups it would seem natural to choose the tree with the maximum number of pure leaves
  - But, if we grow an overly complex tree, we tend to overfit to our training data resulting in poor generalization performance to new individuals



## CART Binary Tree – Depth of a Tree (1)

- How deep (i.e., complex) should we make the tree?
  - The objective being to produce homogeneous groups it would seem natural to choose the tree with the maximum number of pure leaves
  - But, if we grow an overly complex tree, we tend to overfit to our training data resulting in poor generalization performance to new individuals
- How to choose the right size tree?
  - There is a balance to be achieved in the depth and complexity of the tree to optimize predictive performance on future unseen data
    - Complexity of a tree determined by its size or depth, which determines the bias/variance trade-off
  - Two primary approaches: early stopping and pruning
  - Classical approach: grow a very large, complex tree and then prune it back to find an optimal subtree



## CART Binary Tree – Early Stopping

- Tree depth
  - Limiting tree depth to a fixed number of levels
  - The shallower the tree (low number of levels) the less variance we have in our predictions
  - However, there is a risk of introducing too much bias as shallow trees do not capture the complex interactions and patterns in our data



## CART Binary Tree – Early Stopping

- Tree depth
  - Limiting tree depth to a fixed number of levels
  - The shallower the tree (low number of levels) the less variance we have in our predictions
  - However, there is a risk of introducing too much bias as shallow trees do not capture the complex interactions and patterns in our data
- Number of observations in any terminal node
  - Restricting it to an a priori value #, no split after this depth
  - Implies that each leaf nodes must contain at least # observations for predictions
  - Value #
    - Small: high variance, poor generalizability. In the extreme, a single observation is captured in the leaf node and used as a prediction, resulting in an interpolation of the training data
    - Large: restrict further splits therefore reducing variance

© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

## CART Binary Tree – Pruning

- Grow a tree
- Prune it back to find an "optimal subtree"
  - Compare the performance of the two trees by estimating their probability of misclassification/score on a test sample
  - Use a cost/complexity parameter



### CART Binary Tree – Depth of a Tree (2)

- **1**. Grow a very large, complex tree  $T_{max}$
- 2. Select a sequence of nested trees:  $\mathcal{T}_{max} = \mathcal{T}_0 \supset \mathcal{T}_1 \supset \cdots \supset \mathcal{T}_k$  by optimising a cost/complexity criterion that allows the trade-off between fit and complexity of the tree to be regulated
- 3. Select a tree T in this sub-sequence which optimises a performance criterion (minimizes the estimated risk)



## CART Binary Tree – Depth of a Tree (3)

• In rpart R package, values of the function print

- CP: complexity parameter of the tree (CP  $\supseteq \Rightarrow$  complexity 7)
- nsplit: number of splits in the tree
- rel.error: classification error from training data (adjustment error)
- xerror: classification error from 10-fold cross-validation (prevision error)
- xstd: standard deviation associated with the cross-validation error
- $\bullet$  Choose the tree whose the classification error  ${\tt xerror}$  is minimal



## CART Binary Tree – Prediction for New Individuals

- The final tree  $\mathcal{T}$  yields a partition  $\mathbb{R}^p$  into  $|\mathcal{T}|$  terminal nodes  $\mathcal{N}_1, \dots, \mathcal{N}_{|\mathcal{T}|}$
- Used for prediction for new individuals from a new test data
- Classification rule

$$\widehat{g}(x) = \begin{cases} 1, \text{ if } \sum_{i:X_i \in \mathcal{N}(x)} 1_{Y_i=1} \ge \sum_{i:X_i \in \mathcal{N}(x)} 1_{Y_i=0} \\ 0, \text{ otherwise} \end{cases}$$

Score

$$\hat{S}(x) = \hat{P}(Y = 1 | X = x) = \frac{1}{n} \sum_{i:X_i \in \mathcal{N}(x)} 1_{Y_i = 1}$$

• In rpart R package, using the function predict

#### CART Binary Tree – Tree Performances

- For the final tree, to compare trees between them
- Indicators obtained on a new test data
  - Misclassification rates
  - ROC curves and AUC



## **CART Binary Tree – Feature Interpretation**

- The plot of the final tree allows easy interpretation of the model
- Feature importance measure allows to measure the importance of feature
  - It is possible that features that do not appear in the tree construction are important in explaining the feature of interest (a feature could be used multiple times in a tree)
  - The total reduction in the loss function across all splits by a feature are summed up and used as the total feature importance
  - After standardization, the most important feature has a value of 100 and the remaining features are scored based on their relative reduction in the loss function



## CART Binary Tree – Conclusion

- Quite simple method, relatively easy to use (no particular preprocessing requirements, such as monotonic transformation, dealing with outliers,...)
- For regression and classification problems
- Interpretable results (difficulty increase with the depth of the tree)
- Drawback
  - Known to be unstable, sensitive to slight perturbations of the sample
  - Do not often achieve state-of-the-art predictive accuracy

# Bagging – Introduction

#### Bootstrap Aggregating

- One of the first ensemble algorithms machine learning practitioners learn
- Designed to improve the stability and accuracy of regression and classification algorithms
- Instead of constructing a single estimator, constructing, on bootstrap samples, a large number *B*, *g*<sub>1</sub>, ..., *g*<sub>*B*</sub>, then aggregating them,  $\hat{g} = \frac{1}{B} \sum_{k=1}^{B} g_k(x)$
- Helps to reduce variance and minimize overfitting by model averaging
- Usually applied to decision tree methods, but can be used with any type of method

# Bagging – Context

- As in previous part, *Y* (continuous, categorical) feature to be explained by *p* (continuous, categorical) explanatories features *X*<sub>1</sub>, ..., *X*<sub>*p*</sub>
- Regression or classification problem
- For further simplification, we will consider the regression problem

Notations

- (*X*, *Y*) random pair of values in  $\mathbb{R}^d \times \mathbb{R}$
- $\mathcal{D}_n = (X_1, Y_1), \dots, (X_n, Y_n)$  a *n*-sample *i*.*i*.*d*. with same probability distribution as (X, Y)

# Bagging – Interest

- Regression model
  - $Y = m(X) + \varepsilon$
- One notes

$$\widehat{m}_B(x) = \frac{1}{B} \sum_{k=1}^B m_k(x)$$

- an estimator of m obtained by aggregating B estimators  $m_1, \ldots, m_B$ 

Reminder

•  $\widehat{m}_B(x) = \widehat{m}_B(x; (X_1, Y_1), \dots, (X_n, Y_n))$ , and  $m_k(x) = m_k(x; (X_1, Y_1), \dots, (X_n, Y_n))$  are random variables

#### Therefore

- Interest in aggregation measured by comparing the performance of  $\hat{m}_{R}(x)$  with that of  $m_k(x)$ , k = 1, ..., B (e.g. bias and variance of these estimators) © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

## Aggregating – Bias and Variance (1)

Hypothesis: the random variables  $m_1, ..., m_B$  are *i*.*i*.*d*.

Bias

- $\operatorname{E}[\widehat{m}_B(x)] = \operatorname{E}[m_k(x)]$
- $\Rightarrow$  Aggregating does not change the bias



## Aggregating – Bias and Variance (1)

Hypothesis: the random variables  $m_1, ..., m_B$  are *i*.*i*.*d*.

Bias

- $\operatorname{E}[\widehat{m}_B(x)] = \operatorname{E}[m_k(x)]$
- $\Rightarrow$  Aggregating does not change the bias

#### Variance

- $\operatorname{V}[\widehat{m}_B(x)] = \frac{1}{B} \operatorname{V}[m_k(x)]$
- $\Rightarrow$  Aggregating make the variance tend toward 0
# Aggregating – Bias and Variance (2)

Warning

- The estimators  $m_1, \ldots, m_B$  being obtained on the same sample, the hypothesis independence is not suitable
- Reduction of the dependency between estimators  $m_k$ , k = 1, ..., B introducing new sources of randomness
  - Bootstrap samples



# Bagging – Principle (1)

- $m_k$  will not be built on the  $\mathcal{D}_n = (X_1, Y_1), \dots, (X_n, Y_n)$  sample, but on bootstrap samples of  $\mathcal{D}_n$
- Inputs
  - $x \in \mathbb{R}^d$  the observation to be predicted,  $\mathcal{D}_n$  the sample
  - A regressor (CART, 1-nearest neighbours (and other small values),...)
  - B number of estimators that are aggregated
- For k = 1, ..., B
  - Draw a bootstrap sample in  $\mathcal{D}_n$
  - Fit the regressor on this bootstrap sample  $m_k(x)$
- Output

- Estimator 
$$\widehat{m}_B(x) = \frac{1}{B} \sum_{k=1}^{B} m_k(x)$$

# Bagging – Drawing of Bootstrap Sample

- Bootstrap draw are
  - Represented by *B* random variables  $\theta_k = 1, ..., B$
  - Carried out according to the same law and independently
    - $\theta_1, \ldots, \theta_B$  are *i*.*i*.*d*. of the same law of  $\theta$
- 2 technics
  - Drawn of *n* observations with replacement
  - Drawn of l < n observations without replacement
- Consequence
  - Aggregated estimators includes 2 sources of randomness (sample and bootstrap draw):  $m_k(x) = m(x, \theta_k, \mathcal{D}_n)$

# Bagging – Principle (2)

- Choice of the number of iterations
- Choice of the regressor



### Bagging – Choice of the Number of Iterations

According to the law of large numbers

$$\lim_{B \to \infty} \widehat{m}_B(x) = \lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^B m_k(x) = \lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^B m_k(x, \theta_k, \mathcal{D}_n)$$
$$= \mathbb{E}_{\theta}[m(x, \theta, \mathcal{D})] = \overline{m}(x, \mathcal{D}_n) \ p.s|\mathcal{D}_n$$



## Bagging – Choice of the Number of Iterations

According to the law of large numbers

$$\lim_{B \to \infty} \widehat{m}_B(x) = \lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^B m_k(x) = \lim_{B \to \infty} \frac{1}{B} \sum_{k=1}^B m_k(x, \theta_k, \mathcal{D}_n)$$
$$= \mathbb{E}_{\theta}[m(x, \theta, \mathcal{D})] = \overline{m}(x, \mathcal{D}_n) \ p.s|\mathcal{D}_n$$

⇒ When *B* is large,  $\widehat{m}_B$  stabilise towards the bagging estimator  $\overline{m}(x, \mathcal{D}_n)$ ⇒ The number of iterations *B* is not a parameter to be calibrated. Take it as large as possible according to the computation time

## Bagging – Choice of the Regressor

• We have

$$\begin{split} & \mathrm{E}[\widehat{m}_{B}(x)] = \mathrm{E}[m_{k}(x,\theta_{k},\mathcal{D}_{n})] \\ & \mathrm{V}[\widehat{m}_{B}(x)] = \rho(x)\mathrm{V}[m(x,\theta_{k},\mathcal{D}_{n})] - \frac{1-\rho(x)}{B}\mathrm{V}[m(x,\theta_{k},\mathcal{D}_{n})] \\ & \quad \text{where } \rho(x) \!=\! \mathrm{corr}\Big(m(x,\theta_{k},\mathcal{D}_{n}),m(x,\theta_{k'},\mathcal{D}_{n})\Big) \text{ for } k \neq k' \end{split}$$



# Bagging – Choice of the Regressor

#### • We have

$$\begin{split} \mathbf{E}[\widehat{m}_{B}(x)] &= \mathbf{E}[m_{k}(x,\theta_{k},\mathcal{D}_{n})] \\ \mathbf{V}[\widehat{m}_{B}(x)] &= \rho(x)\mathbf{V}[m(x,\theta_{k},\mathcal{D}_{n})] - \frac{1-\rho(x)}{B}\mathbf{V}[m(x,\theta_{k},\mathcal{D}_{n})] \\ & \text{where } \rho(x) \!=\! \operatorname{corr}\!\left(m(x,\theta_{k},\mathcal{D}_{n}),m(x,\theta_{k'},\mathcal{D}_{n})\right) \text{ for } k \neq k' \end{split}$$

#### $\Rightarrow$ Bagging does not change the bias

- ⇒ *B* large → V[ $\hat{m}_B(x)$ ] ≈  $\rho(x)V[m(x, \theta_k, D_n)]$  → the variance decreases as the correlation between the predictors decreases
- $\Rightarrow$  Need to aggregate estimators that are sensitive to small perturbations in the sample, e.g. trees

# Bagging – Remarks (1)

• For algorithms that are stable or have high bias, bagging offers less improvement on predicted outputs since there is less variability (e.g., bagging a linear regression model will effectively just return the original predictions for large enough *B*)

# Bagging – Remarks (1)

- For algorithms that are stable or have high bias, bagging offers less improvement on predicted outputs since there is less variability (e.g., bagging a linear regression model will effectively just return the original predictions for large enough *B*)
- A benefit to creating ensembles via bagging, based on resampling with replacement, is that it can provide its own internal estimate of predictive performance with the out-of-bag (OOB) sample (*see latter*)
  - The OOB sample can be used to test predictive performance
  - The results are generally comparable to those of the k-fold cross-validation, provided that the data set is large enough (n > 1000)
  - ⇒ As the data sets become larger and the bagging iterations increase, it is common to use the OOB error estimate as a proxy for predictive performance

# Bagging – Remarks (2)

- Computation
  - Bagging can become computationally intense as the number of iterations increases
  - The process of bagging involves fitting models to each of the bootstrap samples which are completely independent of one another
  - As a solution, each model can be trained in parallel and the results aggregated in the end for the final model



# Bagging – Remarks (2)

- Computation
  - Bagging can become computationally intense as the number of iterations increases
  - The process of bagging involves fitting models to each of the bootstrap samples which are completely independent of one another
  - As a solution, each model can be trained in parallel and the results aggregated in the end for the final model
- Feature interpretation
  - Models that are normally perceived as interpretable are no longer so
  - A solution, use of measure of feature importance

# Bagging – Remarks (3)

Bagging trees

- Trees in bagging are not completely independent of each other since all the original features are considered at every split of every tree
- Trees from different bootstrap samples typically have similar structure to each other (especially at the top of the tree) due to any underlying strong relationships
- Known as "tree correlation" which prevents bagging from further reducing the variance of the base learner
- A solution, random forests which extend and improve upon bagged decision trees by reducing this correlation and thereby improving the accuracy of the overall ensemble



#### **Random Forests – Introduction**

- A random forest is defined by a collection of de-correlated trees
- Aggregates trees built on bootstrap samples
- Reduce tree correlation by injecting more randomness into the treegrowing process
- Léo Breiman's algorithm has largely become the authoritative procedure
  - To reduce the correlation between the trees being aggregated, proposes to select the best "feature" from a set composed of only m features randomly chosen from the initial d features



## Random Forests – Algorithm

Inputs

- $x \in \mathbb{R}^d$  the observation to be predicted,  $\mathcal{D}_n$  the sample
- B number of trees;  $n_{max}$  maximum number of observations per node
- $m \in \{1, ..., d\}$  the number of candidate features to split a node

• For k = 1, ..., B

- Draw a bootstrap sample in  $\mathcal{D}_n$
- Grow a CART regression/classification tree on the bootstrap sample, each split being selected by minimizing the CART cost function on a set of m features randomly chosen among the d. We denotes  $\mathcal{T}(., \theta_k, \mathcal{D}_n)$  the resulting tree
- Output
  - Estimator  $\hat{\mathcal{T}}_B(x) = \frac{1}{B} \sum_{k=1}^B \mathcal{T}_k(x)$

### Random Forests – Remarks

- Aggregation step consist of
  - A majority vote (classification problem)
  - A mean (regression problem)
- 2 sources of randomness in  $\theta_k$ 
  - Bootstrapping
  - *m* features randomly selected at each step of the tree grow
- Estimator known to provide accurate estimates on complex data (many variables, missing data,...)
- Estimator not very sensitive to the choice of its parameters  $(B, n_{max}, m)$
- Implemented on most statistical software (RandomForest function from the randomForest R package)

#### Random Forests – Choice of B

- Interest in bagging: to reduce the variance of the estimators being aggregated
- Bias is not improved by bagging  $\Rightarrow$  aggregate estimators with a low bias (unlike boosting)
- Deep trees, with few observations in terminal nodes
  - By default in RandomForest:  $n_{max} = 5$  in regression and in 1 classification
  - Tree is complete (but do not prune)



## Random Forests – Choice of m

- Related to the correlation between the trees  $\rho(x)$
- *m* has an influence on the bias/variance trade-off of the forest

-*m* 

- The tendency is to move towards a "random" choice of tree-cutting features  $\Rightarrow$  trees are more and more different  $\Rightarrow \rho(x) \bowtie \Rightarrow$  the variance of the forest decreases
- Inversely when  $m \nearrow$
- Recommendation
  - *m* should be considered a tuning parameter
  - Compare the performance of the forest for several values of m

Comment

- By default, m = d/3 in regression, and  $\sqrt{d}$  in classification

## Random Forests – Performance Measurement

- As with other classifiers and regressors, it is necessary to define criteria to measure the performance of random forests
- Examples

• Prediction error 
$$E\left[\left(Y - \hat{T}_B(X)\right)^2\right]$$
 in regression

- Probability error  $P\left[\left(Y \neq \widehat{T}_B(X)\right)\right]$  in classification
- As with other methods, these criteria can be assessed by learning/validation or cross-validation
- The bootstrap phase of the bagging algorithms makes it possible to define a method for estimating these criteria: Out Of Bag (OOB) method

# Performance Measurement – Out Of Bag (1)

- OOB method consists in using the observations that are not in the bootstrap samples as a validation sample to estimate the performance of the forest
- Avoids the need for cross-validation to estimate the prediction performance





## Performance Measurement – Out Of Bag (2)

- For each observation  $(X_i, Y_i)$  of  $\mathcal{D}_n$ ,  $\mathcal{O}_B$  is the set of trees in the forest that do not contain this observation in their bootstrap sample
- The prediction of Y at point  $X_i$  is done according to

$$- \hat{Y}_i(x) = \frac{1}{|\mathcal{O}_B|} \sum_{k \in \mathcal{O}_B} \mathcal{T}(X_i, \theta_k, \mathcal{D}_n)$$

- OOB estimators
  - Prediction error is estimated by  $\frac{1}{n}\sum_{i=1}^{n} (\hat{Y}_i Y_i)^2$
  - Probability error is estimated by  $\frac{1}{n} \sum_{i=1}^{n} 1_{\hat{Y}_i \neq Y_i}$

## Performance Measurement – Out Of Bag (3)

#### • Example

| 5 | 1 | 4 | 5 | 2 | $m_1$                 |
|---|---|---|---|---|-----------------------|
| 4 | 5 | 3 | 2 | 5 | <i>m</i> <sub>2</sub> |
| 3 | 5 | 3 | 4 | 3 | <i>m</i> 3            |
| 4 | 3 | 3 | 1 | 5 | m <b>4</b>            |

- Samples 2 and 3 do not contain the first observation, so  $\hat{Y}_1 = \frac{1}{2} (m_2(X_1) + m_3(X_1))$ 

- The same applies to all observations  $\Rightarrow \hat{Y}_2, \dots, \hat{Y}_4$
- The error is estimated by  $\frac{1}{4}\sum_{i=1}^{4} (\hat{Y}_i Y_i)^2$

- Random forests often seen as a black box lacking interpretability compared to parametric models, such as the logistic model
- Importance variable
  - Allows to measure the importance of the variables in the model
  - Like the OOB error, it is based on the fact that not all observations are used to construct the forest trees



• Let  $OOB_k$  the OOB sample associated with the  $k^{th}$  tree, containing observations that are not in the  $k^{th}$  bootstrap sample



- Let  $OOB_k$  the OOB sample associated with the  $k^{th}$  tree, containing observations that are not in the  $k^{th}$  bootstrap sample
- Let  $E_{OOB_k}$  be the prediction error of tree  $k^{th}$  measured on this sample

 $- E_{OOB_k} = \frac{1}{|OOB_k|} \sum_{i \in OOB_k} (T(X_i, \theta_k, \mathcal{D}_n) - Y_i)^2$ 

- Let  $OOB_k$  the OOB sample associated with the  $k^{th}$  tree, containing observations that are not in the  $k^{th}$  bootstrap sample
- Let  $E_{OOB_k}$  be the prediction error of tree  $k^{th}$  measured on this sample

$$E_{OOB_k} = \frac{1}{|OOB_k|} \sum_{i \in OOB_k} (T(X_i, \theta_k, \mathcal{D}_n) - Y_i)^2$$

• Let  $OOB_k^j$  the sample  $OOB_k$  in which the values of feature *j* have been randomly perturbed and  $E_{OOB_k}^j$  the prediction error of tree *k* measured on this sample

$$-E_{OOB_k}^j = \frac{1}{|OOB_k^j|} \sum_{i \in OOB_k^j} (T(X_i^j, \theta_k, \mathcal{D}_n) - Y_i)^2$$

- Let  $OOB_k$  the OOB sample associated with the  $k^{th}$  tree, containing observations that are not in the  $k^{th}$  bootstrap sample
- Let  $E_{OOB_k}$  be the prediction error of tree  $k^{th}$  measured on this sample

$$E_{OOB_k} = \frac{1}{|OOB_k|} \sum_{i \in OOB_k} (T(X_i, \theta_k, \mathcal{D}_n) - Y_i)^2$$

• Let  $OOB_k^j$  the sample  $OOB_k$  in which the values of feature *j* have been randomly perturbed and  $E_{OOB_k}^j$  the prediction error of tree *k* measured on this sample

- The importance of feature *j* is
  - $Imp(X_j) = \frac{1}{B} \sum_{k=1}^{B} \left( E_{OOB_k}^j E_{OOB_k} \right) \Rightarrow$  Features with the largest average decrease in accuracy are considered most important

#### Random Forests – Remarks

- They are a very powerful ready-made algorithm that often offers high predictive accuracy
- They have all the advantages of decision trees and bagging, and greatly reduce instability and correlation between trees
- Due to the added split feature selection attribute, they are also faster than bagging as they have a smaller feature search space at each tree split
- They will still suffer from slow computational speed as the data sets get larger, but modern implementations allow for parallelization to improve training time



# Boosting – Introduction (1)

- Algorithms of gradient boosting provide answer to regression and classification problems
- Whereas random forests build an ensemble of deep independent trees, gradient boosting build an ensemble of shallow trees in sequence with each tree learning and improving on the previous one
- Although shallow trees by themselves are rather weak predictive models, they can be "boosted" to produce a powerful "committee"
- Bagging and random forests work by combining multiple models together into an overall ensemble



# Boosting – Introduction (2)

- Main idea: to add new models to the ensemble sequentially
- Boosting attacks the bias-variance trade-off by starting with a weak model
  - e.g., a decision tree with only a few splits
- Then, sequentially boosts its performance by continuing to build new

e.g., new trees

- Where each new model in the sequence tries to fix up where the previous one made the biggest mistakes
  - i.e., in each new tree in the sequence, it will focus on the training rows where the previous tree had the largest prediction errors



Boehmke B, Greenwel BM. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series.

# Boosting – Principle (1)

- (*X*, *Y*) random pair of values in  $\mathbb{R}^d \times \mathcal{Y}$
- Given  $\mathcal{G}$  a family of rules, we want to find the best rule in  $\mathcal{G}$ 
  - Choose the rule that minimise a loss function, for example  $\mathcal{R}(g) = \mathbb{E}[\ell(Y, g(x))]$
- Problem
  - The loss function is not calculable
- Idea
  - Choose the rule that minimise the empirical version of the loss function

 $\mathcal{R}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, g(X_i))$ 

- where  $\ell(y, g(x))$  measure the error between the prediction g(x) and the observation y

# Boosting – Principle (2)

Problem

- No explicit solution  $\Rightarrow$  need to find an algorithm to reach the solution



# Boosting – Principle (2)

Problem

- No explicit solution  $\Rightarrow$  need to find an algorithm to reach the solution
- Idea
  - To use a gradient descent algorithm (iterative algorithm)
    - Very generic optimization algorithm capable of finding optimal solutions to a wide range of problems
    - Adjusts the parameter(s) iteratively in order to minimize a loss function
    - Measures the local gradient of the loss function for a given set of parameters and takes steps in the direction of the descending gradient
    - The minimum is reach once the gradient is zero

# Boosting – Principle (2)

Problem

- No explicit solution  $\Rightarrow$  need to find an algorithm to reach the solution
- Idea
  - To use a gradient descent algorithm (iterative algorithm)
    - Very generic optimization algorithm capable of finding optimal solutions to a wide range of problems
    - Adjusts the parameter(s) iteratively in order to minimize a loss function
    - Measures the local gradient of the loss function for a given set of parameters and takes steps in the direction of the descending gradient
    - The minimum is reach once the gradient is zero



Boehmke B, Greenwel BM. Hands-On Machine Learning<sup>®</sup> with R. 2019. Chapman & Hall/CRC The R Series.

## **Boosting – Classical Algorithms**

- adaboost
  - For binary classification

- Loss function  $\ell(y, g(x)) = exp(-yg(x))$  with  $y \in \{-1, 1\}$ 

- logiboost
  - For binary classification

- Loss function 
$$\ell(y, g(x)) = log(1 + exp(-yg(x)))$$
 with  $y \in \{-1, 1\}$ 

- L2-boosting
  - For regression

- Loss function  $\ell(y, g(x)) = (y - g(x)^2)$  with  $y \in \mathbb{R}$ 

# Boosting – Algorithms

• Returns a recursive sequence of estimators  $(g_m)_m$  such as

 $g_m(x) = g_{m-1}(x) + \lambda g_m(x)$ 

- Where the learning rate, regularization parameter,  $\lambda \in ]0,1[$  and  $g_m$  is "weak" rule
- Most often, these "weak" rules are trees with very few splits
- Choose an estimator (or estimation rule) in the sequence  $(g_m)_m$
- Estimating performance of each  $g_m$  by cross-validation methods
- Iteratively from m = 1 to a choose value M
- Remark
  - Although boosting, like bagging, can be applied to any type of model, it is often most effectively applied to decision trees
- **1**. Fit a decision tree to the data:  $T_1(x) = y$
- 2. Fit the next decision tree to the residuals of the previous:  $U_1(x) = y T_1(x)$
- 3. Add this new tree to the algorithm (updating):  $\mathcal{T}_2(x) = \mathcal{T}_1(x) + U_1(x)$ 4. Fit the next decision tree to the residuals of  $\mathcal{T}_2$ :  $U_2(x) = y - \mathcal{T}_2(x)$ 5. Add this new tree to the algorithm (updating):  $\mathcal{T}_3(x) = \mathcal{T}_2(x) + U_2(x)$ 6. Continue this process until cross-validation (or other) indicate to stop

- Simple example
  - A true predictor (x) has a true underlying sine wave relationship (blue line) with y along with some irreducible error
  - The first tree fit in the series is a single decision stump
  - Each successive decision stump thereafter is fit to the previous one's residuals



Boehmke B, Greenwel BM. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series.



- Simple example
  - A true predictor (x) has a true underlying sine wave relationship (blue line) with y along with some irreducible error
  - The first tree fit in the series is a single decision stump
  - Each successive decision stump thereafter is fit to the previous one's residuals
  - Initially there are large errors, but each additional decision stump in the sequence makes a small improvement in different areas across the feature space where errors still remain



Boehmke B, Greenwel BM. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series.



- Simple example
  - A true predictor (x) has a true underlying sine wave relationship (blue line) with y along with some irreducible error
  - The first tree fit in the series is a single decision stump
  - Each successive decision stump thereafter is fit to the previous one's residuals
  - Initially there are large errors, but each additional decision stump in the sequence makes a small improvement in different areas across the feature space where errors still remain
  - 0 to 1024 successive trees are added



Boehmke B, Greenwel BM. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series.

# Boosting – Remark

- At each iteration
  - The bias decreases
  - The variance increases
  - ⇒ Importance to use weak rules (weak learner): large bias and small variance (shallow trees)
  - $\Rightarrow$  The algorithm overfits if the number of iterations is (too) large



## Boosting – Choice of m and $\lambda$

• Choice of m is crucial for boosting estimators

- Overfitting if m is too large (estimators with low bias but large variance); conversely if m is small
- The regularization parameter  $\lambda$  represents the step size of the decrease of the gradient (learning rate)
  - Is linked to m: large value of  $\lambda$  will require few iterations; conversely if  $\lambda$  is small

In practice

- 2 or 3 (small) values are considered for  $\lambda$  (0.1, 0.01)
- For each  $\lambda$ , the best m is chosen using technics such as cross-validation and the same loss function

#### Conclusion

- Random forests and boosting algorithms aggregate trees
- To be effective, trees must be weak learner, therefore poorly performing tress
  - Random forest: grow trees with large variance and small bias
  - Boosting: shallow trees with small variance and large bias
- Aggregating
  - Random forest: variance reduction
  - Boosting: bias reduction



#### Sources

- Laurent Rouvière: <u>https://lrouviere.github.io/machine\_learning/</u> and <u>https://lrouviere.github.io/machine\_learning/cours.pdf</u> (access: November, 2022)
- Bradley Boehmke & Brandon Greenwell. Hands-On Machine Learning with R. 2019. Chapman & Hall/CRC The R Series. <u>https://bradleyboehmke.github.io/HOML/</u> (access: November, 2022)
- François Husson. R pour la science des données. 2018. *Presses universitaires de Rennes*.

