

Fundamentals of Biostatistics

Principle of variability Probabilistic analysis approach Inferences from sample data to a population

La science pour la santé

Institut de Recherci pour le Développeme F R A N C E

Aix*Marseille Université Socialement engagée

Pr Roch Giorgi roch.giorgi@univ-amu.fr

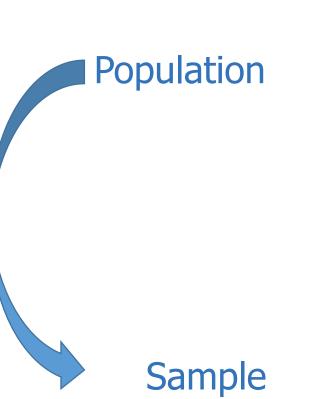
SESSTIM, Faculty of Medical and Paramedical Sciences, Aix-Marseille University, Marseille, France https://sesstim.univ-amu.fr/

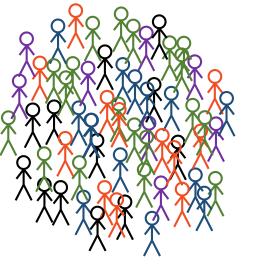
Population and Sample: Definitions

Population

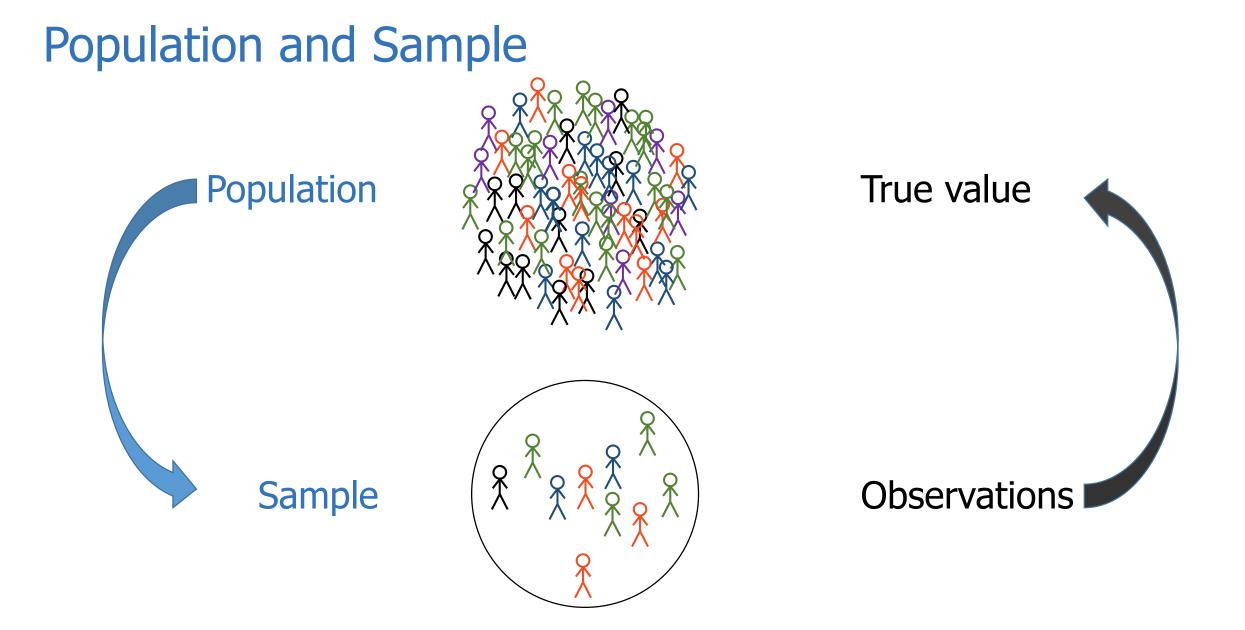
- Set of individuals with their own characteristics
 - Individuals aged 75 and over with atrial fibrillation
- Number of individuals often high
 - Prevalence around 400,000 to 700,000 in French
- Sample
 - Subset of a population
 - On each individual of the sample, one characteristic can be measured which is the subject of the study (often impossible on the whole population)
 - Occurrence of stroke, in order to estimate for each individual its own risk of stroke, or of other embolic event, the main predictors features (variables),...

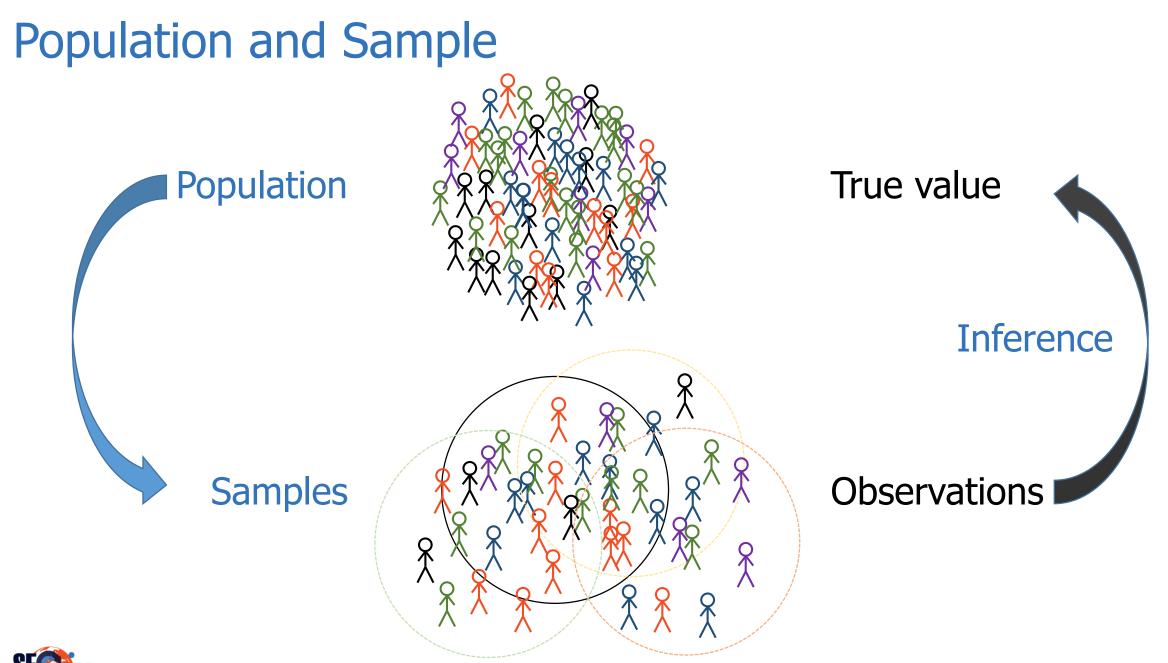
Population and Sample



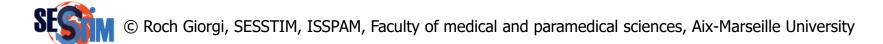








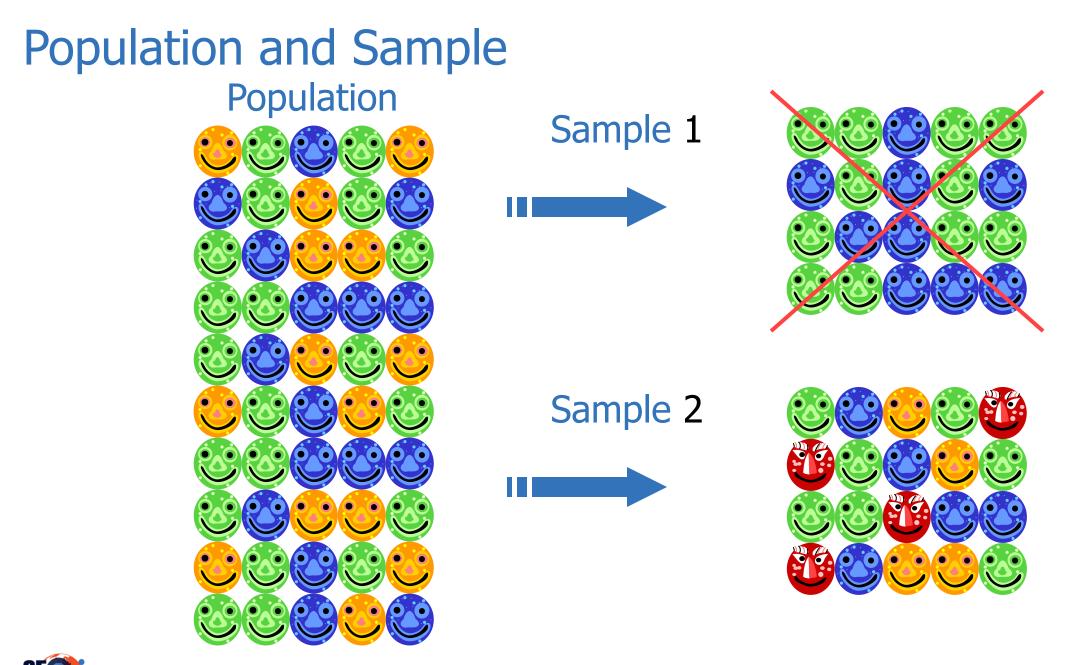
- Observations made on the sample are used to answer questions about the target population
- Observed characteristics are random variables
- Their descriptive parameters allow us to know the distribution in the target population
 - Objective: estimate the parameters of the target population distribution
 - Way: use the observations made on the sample

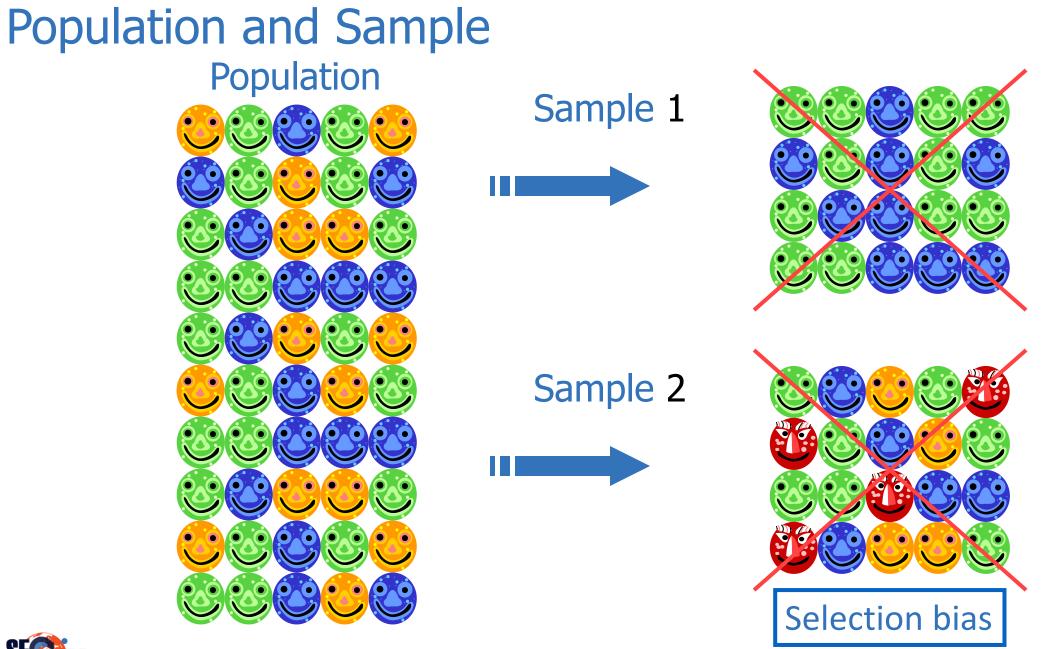


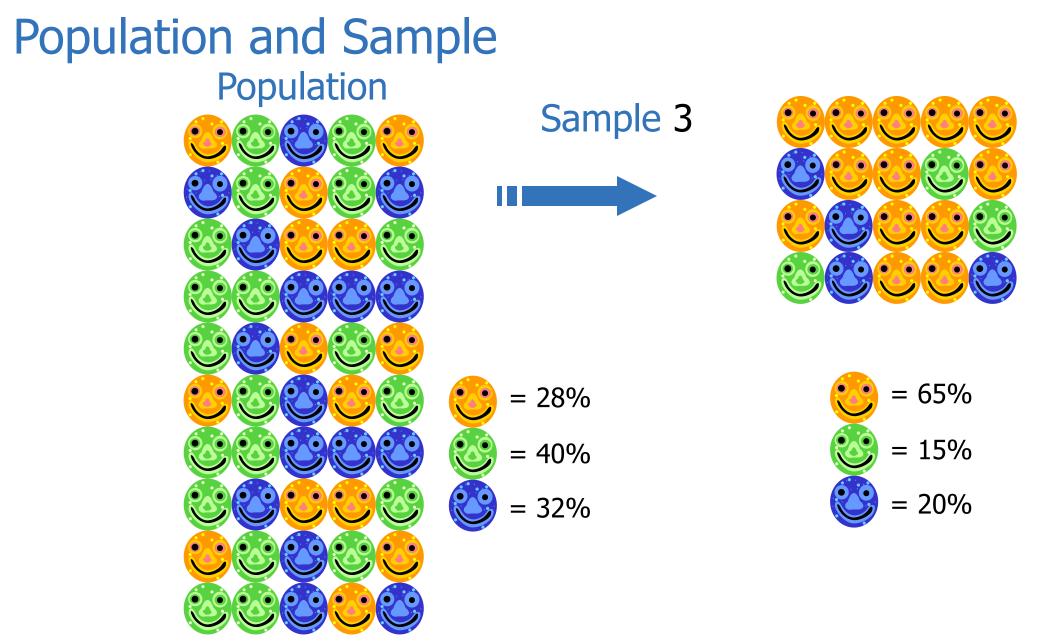
Population and Sample Population Sample 1

Population and Sample Population

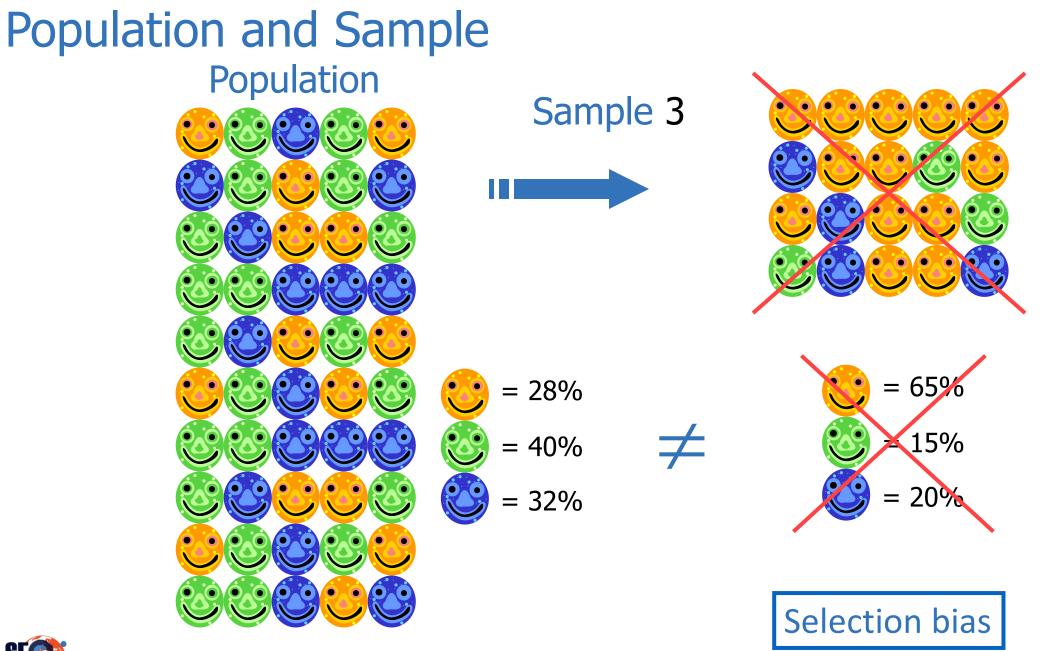
Sample 1

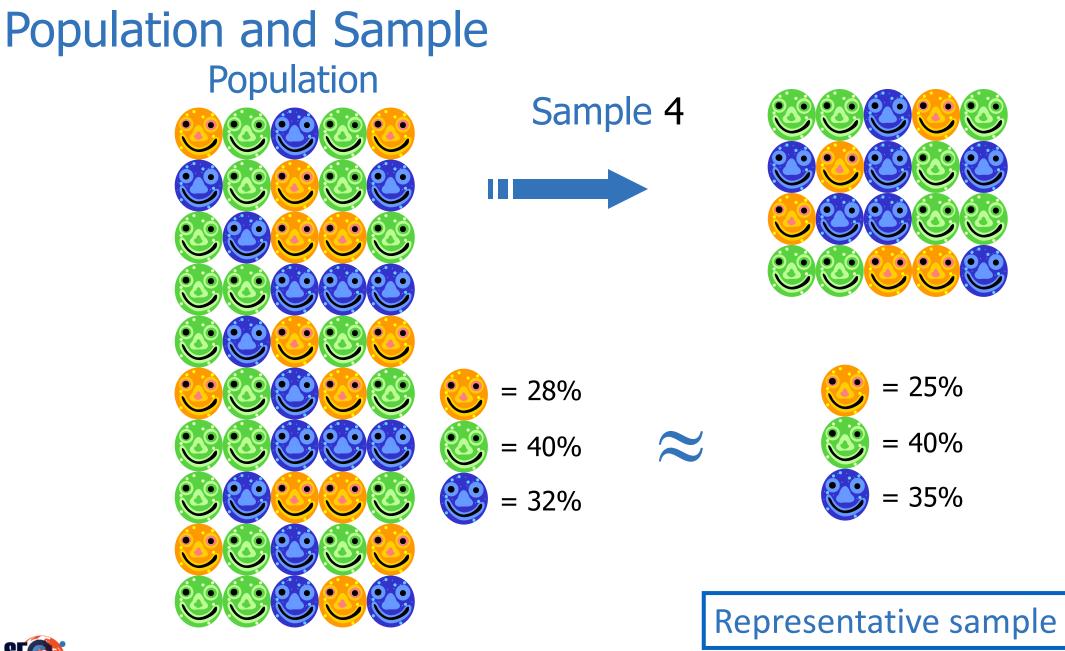




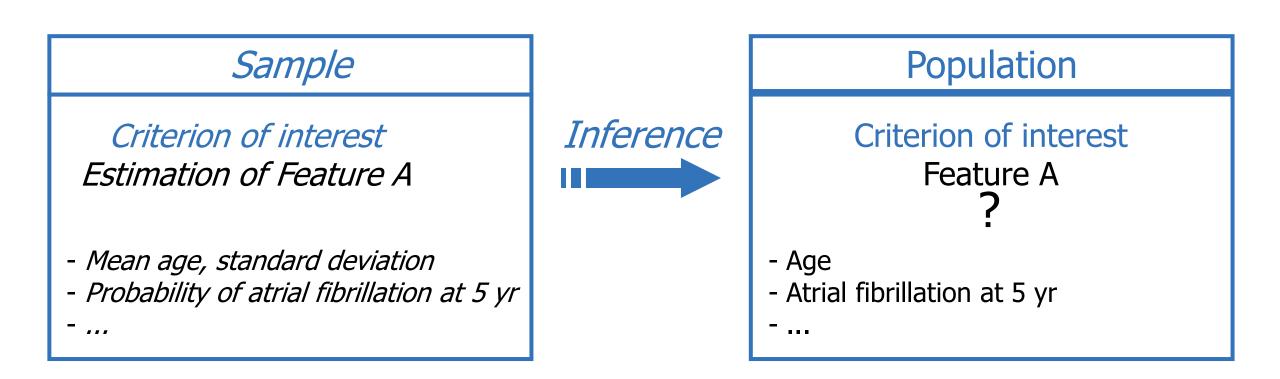


© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University





Population and Sample



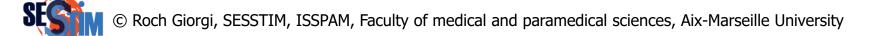
Creating the Sample-s

- A sample provides information on the population
- A good ("unbiased") sample should be representative of the population from which it is drawn
- Need to precisely define the population
- Random sampling (pick at random) is the best way to do this
- The choice of the process may depend on the objective of the study, and therefore on the design of the study
 - Selection of case / of control in a case-control study
 - Selection of individuals in a retrospective cross sectional study
 - Selection, creation of patient groups in a prospective randomised controlled trial

Selection, creation of the exp. / non-exposed groups in a prospective cohort study © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University 15

Sample and Representativeness

- Selection method defined a priori
- Description of the study subjects
- Selection criteria
 - Inclusion, non-inclusion criteria
- Deviations from the protocol

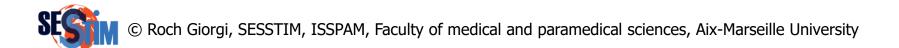


Random Sampling

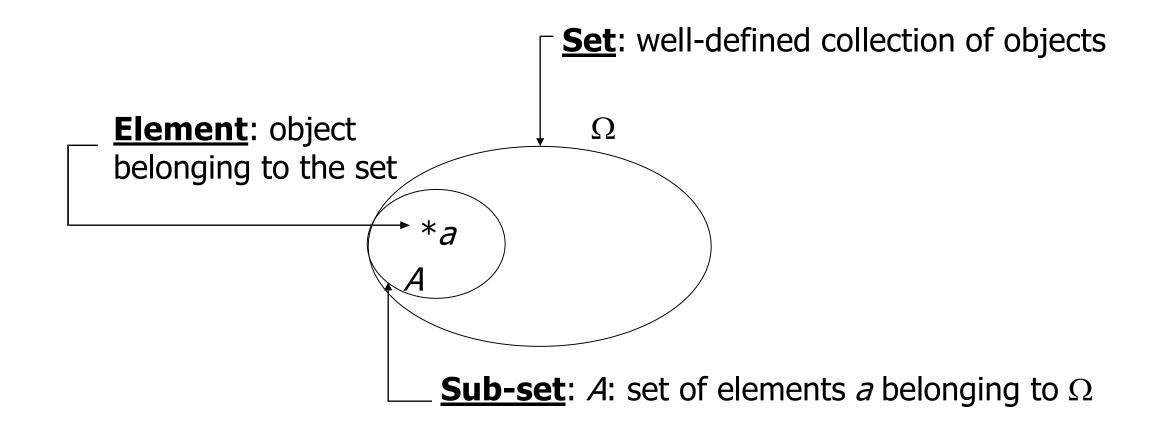
- Each individual in the population has an equal chance of being in the sample (equiprobability)
- Sampling
 - Simple
 - Stratified (ex.: centre, sex,...)

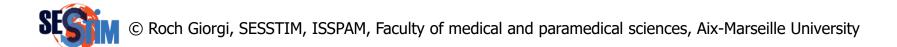
Probabilities

- Probability: models random phenomena whose outcomes are known but whose value cannot be predicted because their realisation is uncertain
- Observation of the outcomes of a random phenomenon on sufficiently large series allows to determine their frequencies and subsequently the distribution that governs it



Reminders about Sets



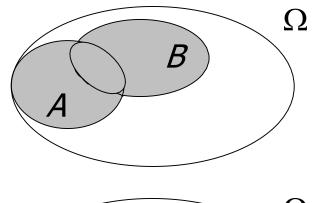


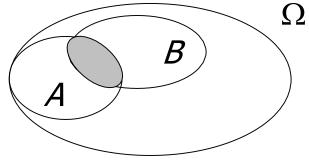
Reminders about Sets

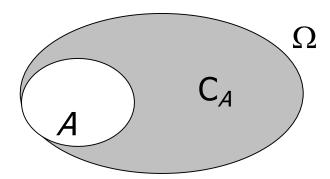
<u>Union</u>: $A \cup B \Leftrightarrow A$ or B

Intersection: $A \cap B \Leftrightarrow A$ and Bif $A \cap B = \emptyset$ then A and B are disjoints

Complementarity: C_A

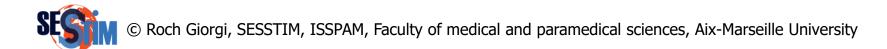






Notion of Probability

- Probability: modelling of random phenomena
- Universal set, Ω : set of possible outcomes (all objects) for a given experiment (certain event)
- Event: subset A of Ω , that is a collection of outcomes (objects). An elementary event is a



Example *Rolling a 6-sided faire dice*

Universal set, $\Omega = \{f1, f2, f3, f4, f5, f6\}$

Event *A*: faces of number $\leq 2 = f1 \cup f2$ Event *B*: faces of number $\geq 5 = f5 \cup f6$ Event *C*: faces of even number $\{2, 4, 6\} = f2 \cup f4 \cup f6$

 $A \cup B = f1 \cup f2 \cup f5 \cup f6, A \cap B = \emptyset$ $A \cup C = f1 \cup f2 \cup f4 \cup f6, A \cap C \neq \emptyset$

Notion of Probability

Experiment repeated n times

	f1	f2	f3	f4	f5	f6	Total			
Absolute Frequencies	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆	n			
Relative Frequencies (Fr.)	n ₁ /n	n ₂ /n	n₃/n	n₄/n	n₅/n	n ₆ /n	1			

$Fr.(A) = (n_1 + n_2)/n$

 $Fr.(A \cup B) = (n_1 + n_2 + n_5 + n_6)/n = (n_1 + n_2)/n + (n_5 + n_6)/n = Fr.(A) + Fr.(B)$ $Fr.(A \cup C) = (n_1 + n_2 + n_4 + n_6)/n \neq Fr.(A) + Fr.(C)$

When $n \to \infty$ the relative frequency of an event tends towards the probability of that event

Probability Axioms

It

 Let be Ω a fundamental set, P the probability function that associates to any event A a positive or null real number. P(A) is called the probability of event A if:

$$P(A) \ge 0$$

$$P(\Omega) = 1$$

if $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$
if $A_i \cap A_j = \emptyset \Rightarrow P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$
can be deduced that:

$$P(\emptyset) = 0$$

$$P(A) \le 1$$

$$P(C_A) = 1 - P(A)$$

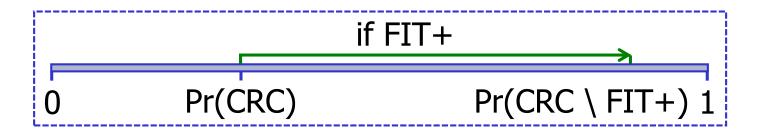
if $A \subset B$, the $P(A) \le P(B)$

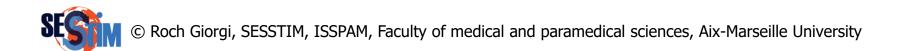
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Conditional Probability

Example

- We are interested in the faecal immunochemical test (FIT) for colorectal cancer (CRC) screening
- The probability of having CRC knowing that the FIT is positive is a conditional probability: P(CRC \ FIT+)





Conditional Probability

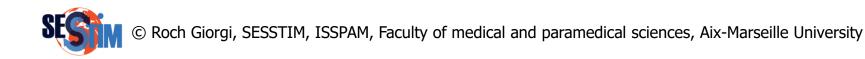
• The probability of *A* knowing *B* is defined by

$$P(A \setminus B) = \frac{P(A \cap B)}{P(B)}$$

hence $P(A \cap B) = P(A \setminus B)P(B) = P(B \setminus A)P(A)$ and

$$P(A \setminus B) = \frac{P(B \setminus A)P(A)}{P(B)}$$

Bayes' rule



Independence in Probability

• A and B are independents if and only if

 $P(A \cap B) = P(A)P(B)$

• If A and B are independents and P(A) > 0, P(B) > 0, then

 $P(A \setminus B) = P(A \cap B)/P(B) = P(A)P(B)/P(B) = P(A)$

2 disjoints events with non-null probabilities are never independent

- Disjoints: $P(A \cap B) = 0$

- Independents: $P(A \cap B) = P(A)P(B)$

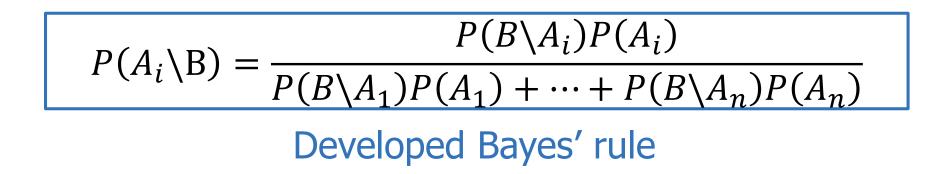
Conditional Probability

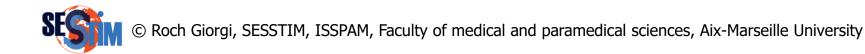
- A_1, \ldots, A_n events that partition Ω
- *B* any event

then

 $P(B) = P(B \cap A_1) \cup P(B \cap A_2) \cup \dots \cup P(B \cap A_n)$

and





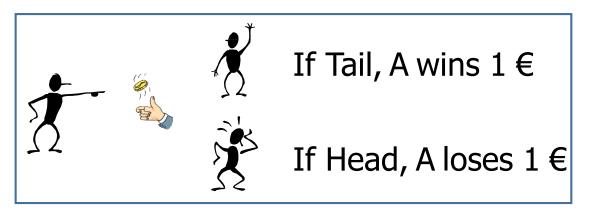
Conditional Probability: Example

- The estimated prevalence of AIDS in a population is 10%
- We know that a diagnostic test is positive in 95% of HIV+ people, and negative un 98% of HIV- people
- What is the probability of being HIV+ if the result of the test is positive?

P(HIV +) = 0.1 $P(T + \setminus HIV +) = 0.95$ $P(T + \setminus HIV -) = 0.02$

 $P(HIV + \backslash T +) = \frac{P(T + \backslash HIV +)P(HIV +)}{P(T + \backslash HIV +)P(HIV +) + P(T + \backslash HIV -)P(HIV -)}$ $P(HIV + \backslash T +) = \frac{0.95 \times 0.1}{0.95 \times 0.1 + 0.02 \times 0.9} = 0.84$

Random Variable



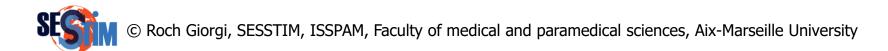
- Ω : {Tail, Head}
- P(Tail)=P(Head)=0.5
- G: A's gain; G=+1 if Tail; G=-1, if Head
- P(G=+1)=P(G=-1)=0.5
- G's distribution: {(+1; 0.5), (-1; 0.5)}

G is a random variable that follows a certain probability distribution

Random Variable: Definition

- Let E a set of events
- with universal finite set Ω ,
- and *a* an elementary event of E

For any event a belonging to E, a number x (random variable) corresponds according to a well-defined distribution

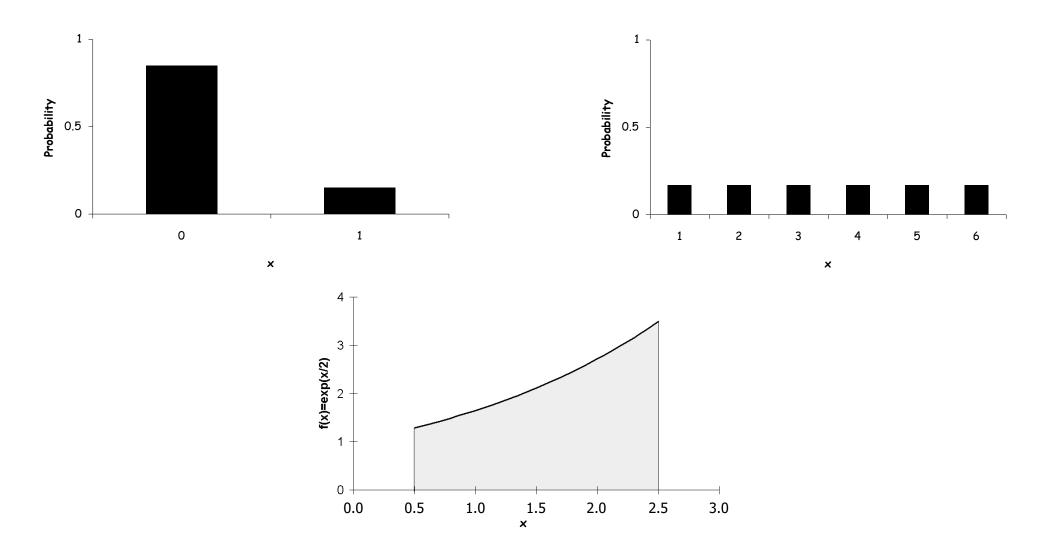


Random Variable: Example

- Let disease M for which it is necessary to start treatment before the diagnosis is confirmed. However, the drug used is known to cause adverse events (AE)
- We know that: $P(M^+) = 0.05$; $P(AE^+ \setminus M^+) = 0.30$; $P(AE^- \setminus M^-) = 0.85$

	M^+		M ⁻				
AE^+	$P(AE^+ \cap M^+) = 0.3 \times 0.05$		$P(AE^+ \cap M^-) = (1 - 0.85) \times (1 - 0.05)$				
	= 0 . 015	X = 1	= 0.143	X = 1			
AE^{-}	$P(AE^- \cap M^+) = (1$	$-0.3) \times 0.05$	$P(AE^- \cap M^-) =$	$= 0.85 \times (1 - 0.05)$			
	= 0.035	X = 0	= 0.808	X = 0			
where, X is a random variable indicator of AE.							
The distribution of <i>X</i> is: {(0; 0.84), (1; 0.16)} © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University							

Characteristic of a Random Variable



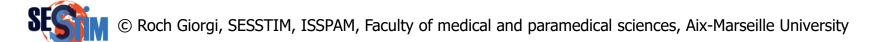
Characteristic of Central Tendency Mean, Mathematical Expectation

- Discrete variable X
 - Let X be a random variable taking values $x_1, x_2, ..., x_n$ with the probabilities $p_1, p_2, ..., p_n$ and $\sum_i p_i = 1, i = 1, ..., n$

$$\mu = E(X) = \sum_{i} p_i x_i$$

- Continuous variable *X*
 - Defined by a density function f(x)

$$\mu = E(X) = \int_{a}^{b} xf(x)dx$$



Characteristic of Central Tendency Mean, Mathematical Expectation

• Example 1: $\mu = (p \times 1) + ((1 - p) \times 0) = (p \times 1) + (q \times 0) = 0.16$

• Example 2:
$$\mu = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 3.5$$

• Example 3:
$$\mu = E(X) = \int_{0.5}^{2.5} f(x) dx = \int_{0.5}^{2.5} \exp(x/2) dx = [\exp(x/2)]_{0.5}^{2.5} = 2.21$$

Characteristic of Dispersion Variance, Standard Deviation

• Discrete variable X

$$\sigma^{2} = \sum_{i} p_{i} [x_{i} - \mu]^{2}$$

= $E((X - \mu)^{2}) = E(X^{2}) - (E(X))^{2}$

• Continuous variable *X*

$$\sigma^2 = \int_a^b (x - \mu)^2 f(x) dx$$

$$\sigma^2 = Variance$$

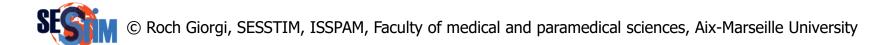
 $\sigma = Standard deviation$

Characteristic of Dispersion Variance, Standard Deviation

• Example 1: $\sigma^2 = p \times (1-p)^2 + q \times (0-q)^2 = pq$

• Example 2:
$$\sigma^2 = 1/6 \left[(1 - 3.5)^2 + \dots + (6 - 3.5)^2 \right] = 2.9$$

• Example 3:
$$\sigma^2 = \int_{0.5}^{2.5} (x - 2.21)^2 \exp(x/2) dx = \int_{0.5}^{2.5} x^2 \exp(x/2) dx - 2.21^2 = 0.68$$

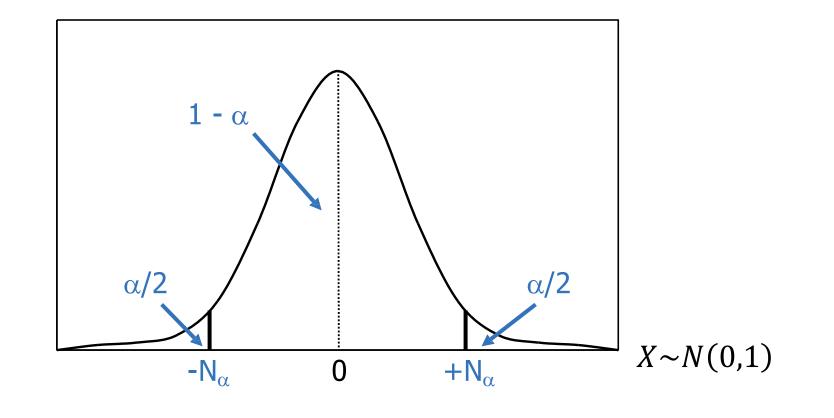


Normal Distribution (Gauss): $N(\mu, \sigma)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- Properties
 - Defined by a continuous density function, determined by μ and σ
 - Density function symmetric with respect to μ
 - Density function goes to a maximum for $x = \mu$ (mode = μ)
 - Median = μ

Standard Normal Distribution: N(0,1)

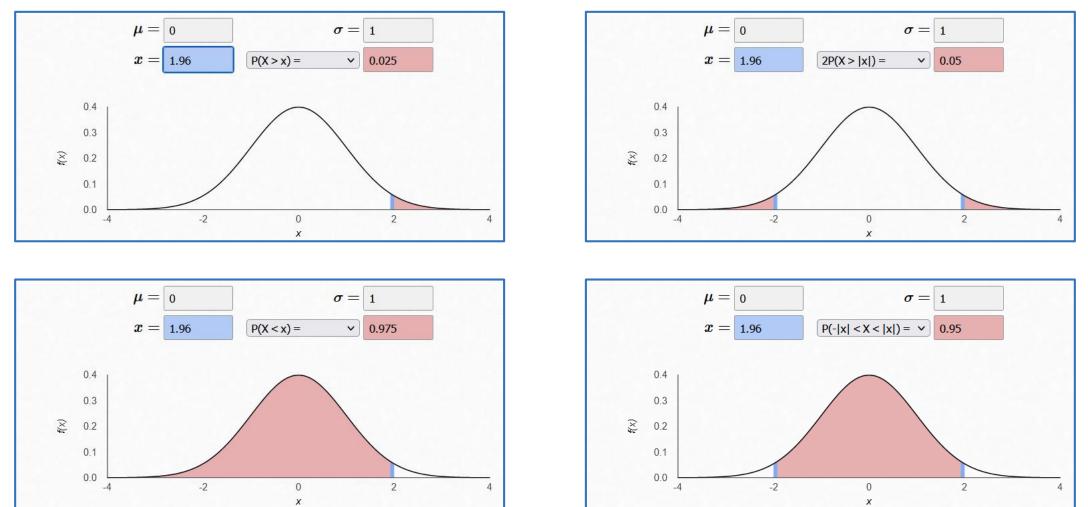


$$\alpha = P(X \le -N_{\alpha} \text{ or } X \ge +N_{\alpha}) = P(|X| \ge +N_{\alpha})$$

Standard Normal Distribution: N(0,1)

Play with: https://homepage.divms.uiowa.edu/~mbognar/applets/normal.html

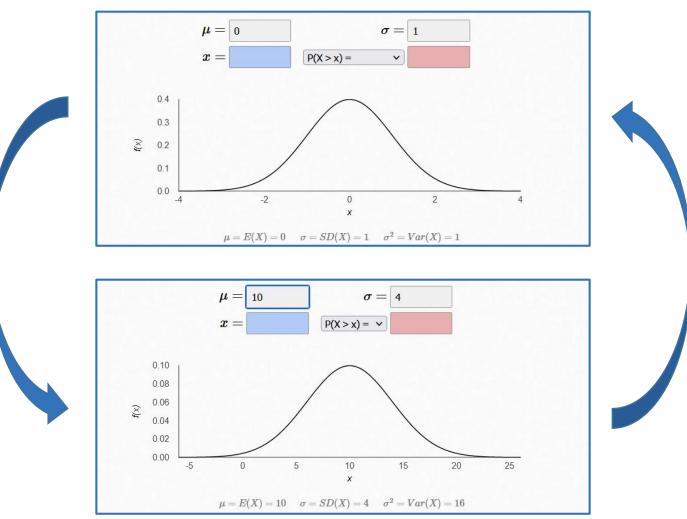
Help ©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa



Standard Normal Distr. $N(0,1) \leftrightarrow$ Normal Distr. $N(\mu, \sigma)$

Play with: https://homepage.divms.uiowa.edu/~mbognar/applets/normal.html

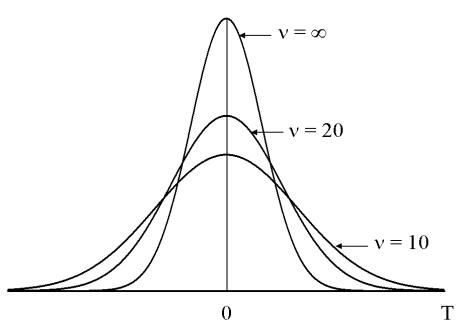
Help ©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa

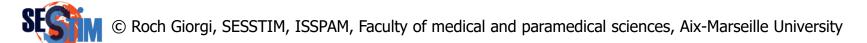


© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

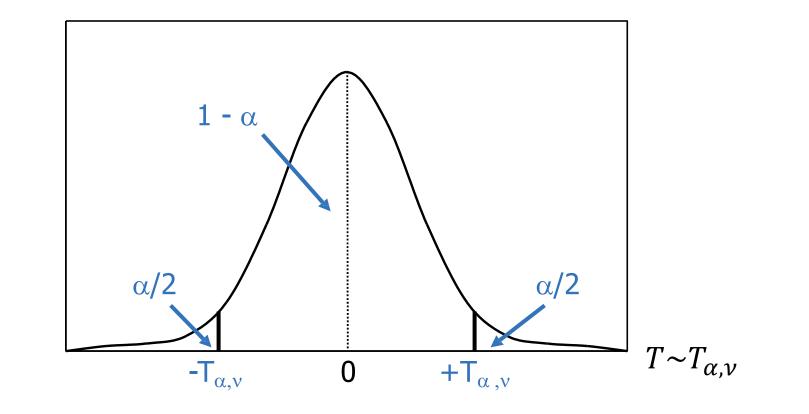
Student's t-Distribution

- v degree of freedom (number of independents data)
- One family of Student distribution for each df
- Properties
 - Symmetric with respect to 0
 - Mode = 0
 - Flattens when $\boldsymbol{\nu}$ small
 - Tends to N(0,1) when $\nu \rightarrow \infty$





Student's t-Distribution

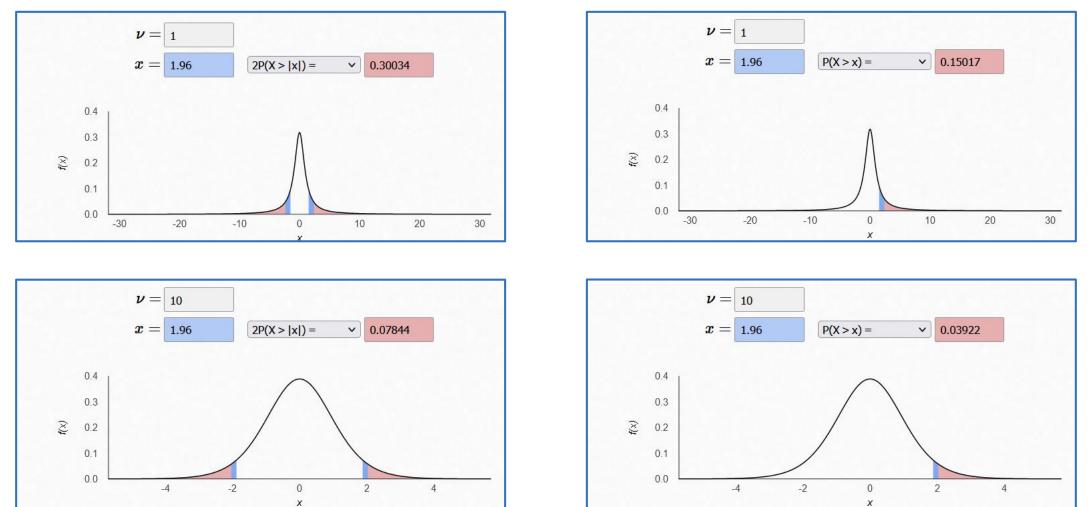


$$\alpha = P(T \le -T_{\alpha,\nu} \text{ or } T \ge +T_{\alpha,\nu}) = P(|T| \ge +T_{\alpha,\nu})$$

Student's t-Distribution

Play with: https://homepage.divms.uiowa.edu/~mbognar/applets/t.html

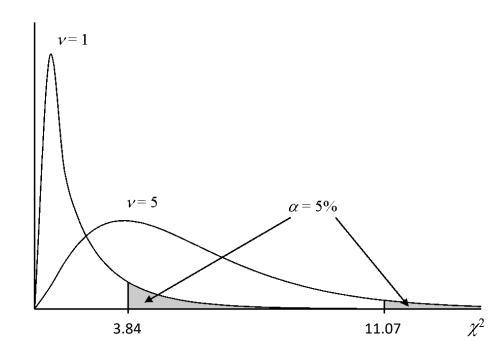
(Help) ©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa



© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Chi-Squared Distribution

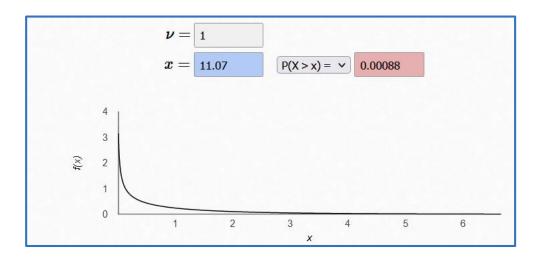
- One family of Chi-squared distribution for each df
- Properties
 - Asymmetric for ν small

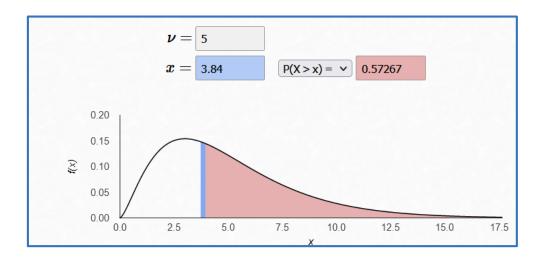


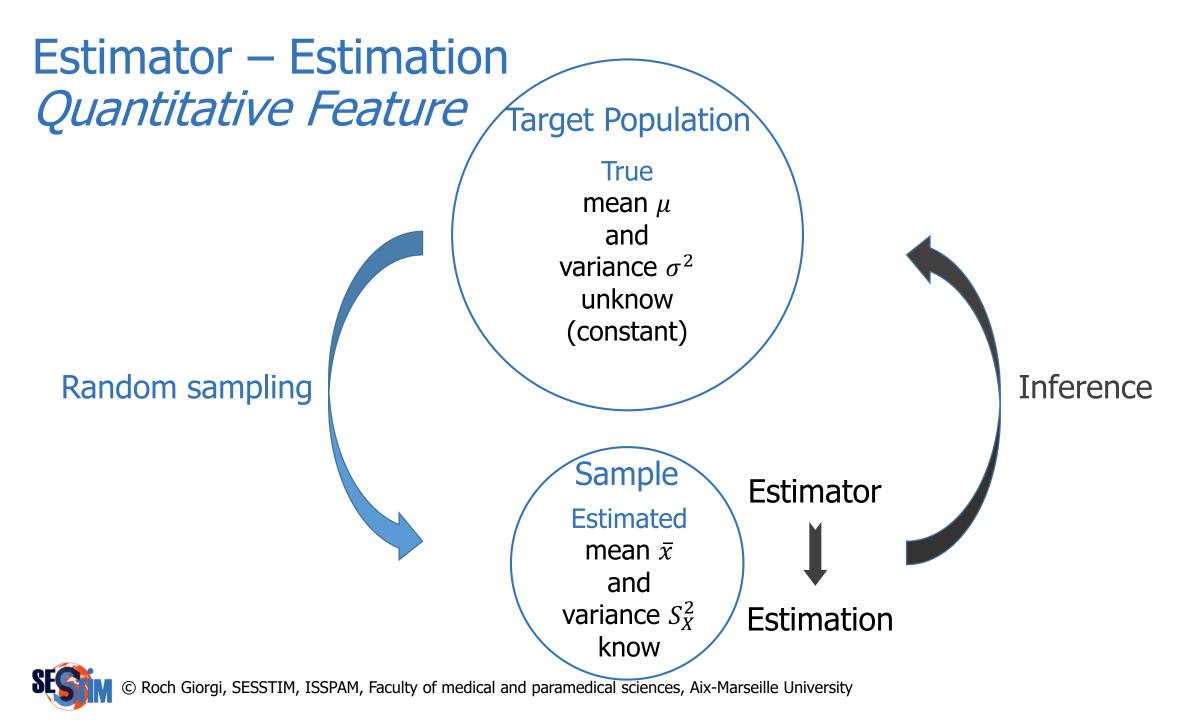
Chi-Squared Distribution

Play with: https://homepage.divms.uiowa.edu/~mbognar/applets/chisq.html

(Help) ©2021 Matt Bognar Department of Statistics and Actuarial Science University of Iowa

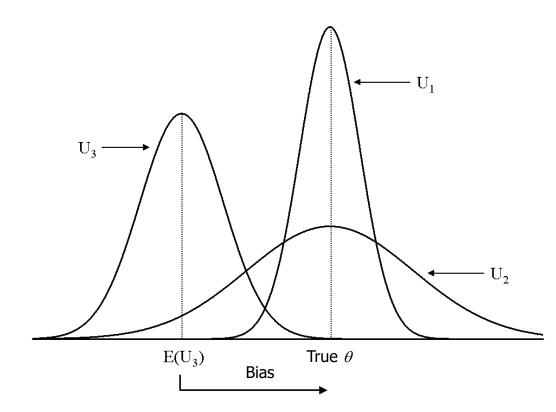






Quality of an Estimator

- U: unbiased estimator of θ if E(U) = θ
- U: biased estimator of θ if E(U) $\neq \theta$, and the bias = E(U) θ



Estimation of a Population Mean and Variance

Quantitative feature X, with observations $x_1, x_2, ..., x_n$ randomly drawn from a sample of size n

 \bullet Estimator, unbiased, of μ

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

- Estimator, convergent, unbiased, of σ^2

$$S_X^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n - 1}$$

- $S_X = \sqrt{S_X^2}$ estimation of the standard deviation

© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Estimation of a Population Proportion and Variance

Qualitative feature X, with k the number of times a given characteristic is presents in a randomly sample of size n

• Estimator, unbiased, of P

$$p = \frac{k}{n}$$

• Estimator, convergent, unbiased, of *Var*(*P*)

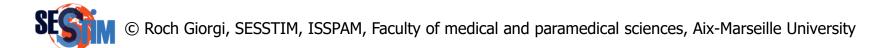
$$Var(p) = \frac{p(1-p)}{n}$$

• $\sqrt{Var(p)}$ estimation of the standard deviation

C Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Estimation and Confidence Interval

- Estimation: point value that is desired to be close to the true (population) value of the parameter of interest (smaller or larger due to sampling fluctuations)
- Need to provide a degree (an interval) of confidence (CI) of resulting estimate
 - Determined from the data of a sample in which one can bet, with an acceptable risk of being wrong, that the true population value is



Confidence Interval

- Risk (α) corresponding to the sampling fluctuations considered as acceptable
- Confidence interval of the estimated parameter $\hat{\theta}$ has the following form

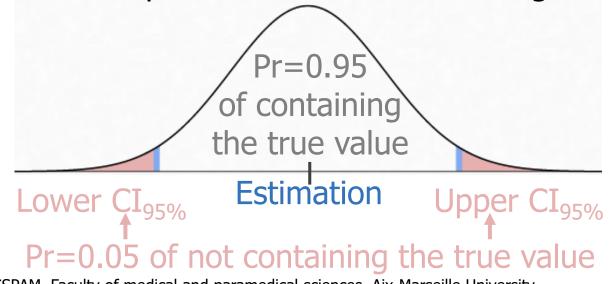
 $\hat{\theta}$ - sampling fluctuations ; $\hat{\theta}$ + sampling fluctuations

- Interpretation
 - We accept that there is a α .100 chances in a hundred of being wrong by saying that the true value of the parameter of interest belongs to the interval
 - We accept that there is a (1α) .100 chances in a hundred of not being wrong by saying that the true value of the parameter of interest belongs to the interval

© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Confidence Interval

- Risk α usually=0.05
- Interpretation
 - We accept that there is a 5 chances in a hundred of being wrong by saying that the true value of the parameter of interest belongs to the interval
 - We accept that there is a 95 chances in a hundred of not being wrong by saying that the true value of the parameter of interest belongs to the interval



🙀 © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Confidence Interval

- Of a mean
 - If $n \ge 30$, then $L_{\alpha} = N_{\alpha}$

$$\bar{x} - L_{\alpha} \cdot \frac{S_{\chi}}{\sqrt{n}} \; ; \; \bar{x} + L_{\alpha} \cdot \frac{S_{\chi}}{\sqrt{n}}$$

- If n < 30, and the distribution of the feature in the population is Normal, then $L_{\alpha} = T_{\alpha,\nu}$

• Of a proportion • If p = k/n is not close to 1 or 0 • If $p \cdot n \ge 5$ and $(1-p) \cdot n \ge 5$ $p - N_{\alpha} \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$; $p + N_{\alpha} \cdot \sqrt{\frac{p \cdot (1-p)}{n}}$

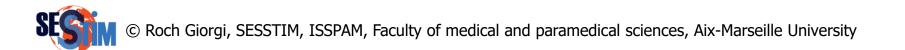
 In a comprehensive cancer registry, cancer mortality in 2010 was as follows:

Lung	Colorectal	Breast	Others
24%	14%	19%	43%

- Has this repartition changed (effect of treatments, preventive measures,...)?
 - Unbiased survey of 1000 cancer deaths in 2020
 - Comparison of an observed distribution to a theoretical distribution

 If the distribution has not changed at all, is there an obligation to observe?

	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	240	140	190	430	1000

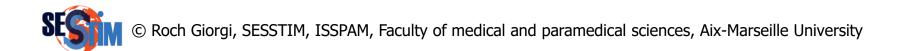


 If the distribution has not changed at all, is there an obligation to observe?

	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	240	140	190	430	1000

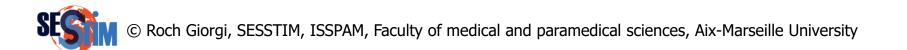
NO

 Sampling fluctuations



 Do the values observed below ensure that the distribution has changed?

	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	260	120	200	420	1000

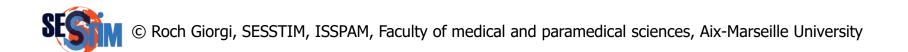


 Do the values observed below ensure that the distribution has changed?

	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	260	120	200	420	1000

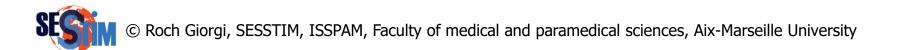
NO

 Distribution with a variability



• Change is more likely if we have?

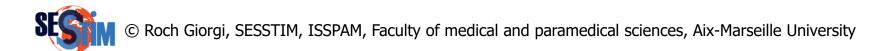
	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	100	190	90	620	1000



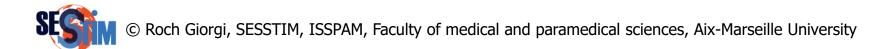
• Change is more likely if we have?

	Lung	Colorectal	Breast	Others	Total
Reference	24%	14%	19%	43%	
Observed	100	190	90	620	1000

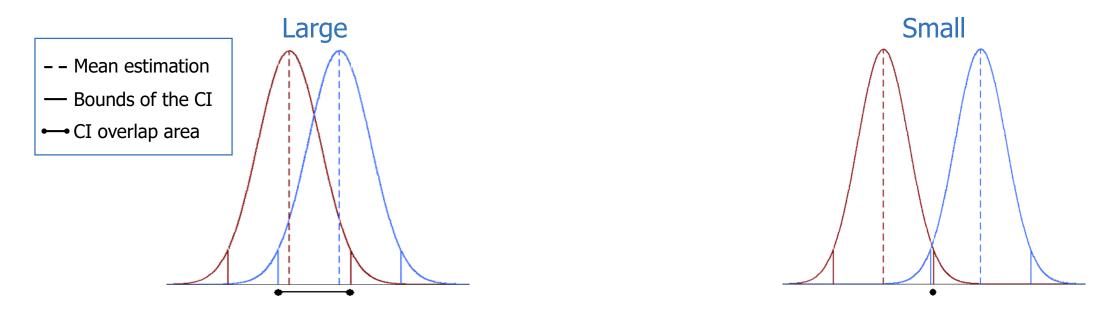
YESNo change is not impossibleMore likely to change

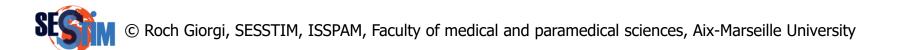


- Patients with atrial fibrillation (AF) treated by treatment A and patients with AF treated by treatment B
- Does the average number of AF recurrences differ according to the treatment of the first AF event?
 - Comparison of 2 independent random samples
 - Outcome: mean number of recurrences and confidence intervals from an unbiased sample of patients

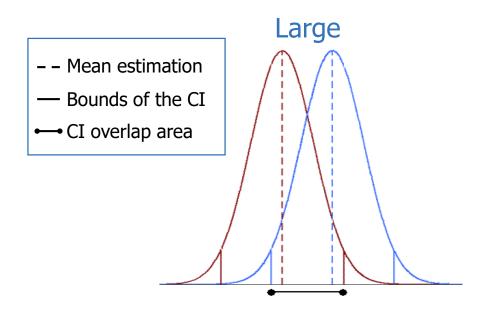


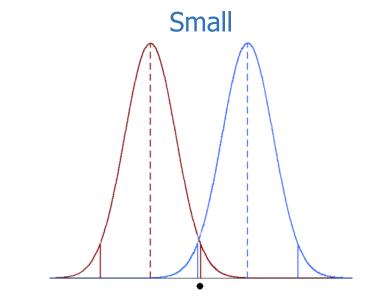
• The overlap area of the confidence interval (CI) is





• The overlap area of the confidence interval (CI) is

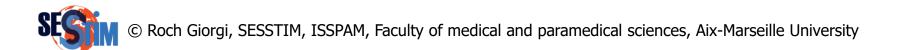




- The observed difference between the estimated means is due to sampling fluctuations
- The 2 samples come from the same population
- It is "unlikely" that the observed difference between the estimated means is due to chance
- The probability that the 2 samples come from the same population is "low"

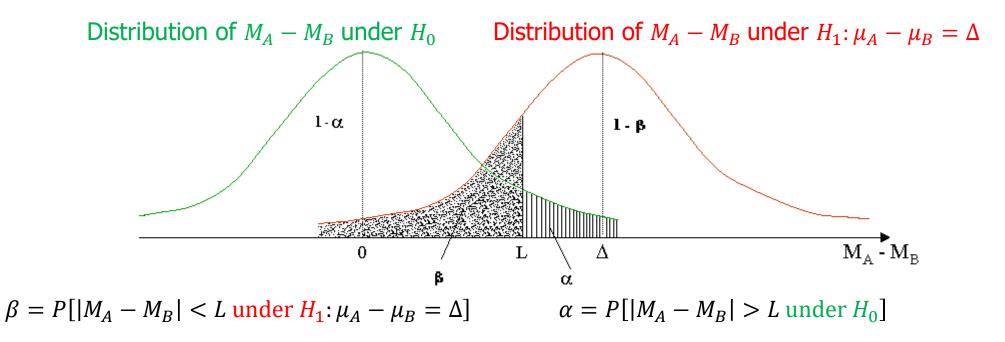
Statistical Tests: Principles

- How to define a threshold between a "large" and "small" coverage area?
 - Value that satisfied the hypothesis that the estimated difference between the means is due to sampling fluctuations: null hypothesis (H_0)
 - This hypothesis will be rejected if the difference between the estimated distribution and the theoretical distribution is too "large", i.e. *H*₀ is too implausible



- Estimated mean number of recurrences
 - \bar{x}_A in Group A
 - \bar{x}_B in Group B
- Hypothesis
 - Null H_0 : $\mu_A = \mu_B$, there is no treatment difference
 - Alternative (two-sided) H_1 : $\mu_A \neq \mu_B$, there is a treatment effect
- Statistic of the appropriate test, $d = M_A M_B$
- A significance level L is determined at which |d| is considered to be "too large", i.e. such that
 - $\alpha = P[|d| > L$ under the null], usually the level of significance $\alpha = 0.05$
- Statistical test of difference between two population means
 - If the obtained p-value is less than the significant level we reject the null hypothesis, in other case we do not reject the null hypothesis

Statistical Tests: Types of Errors



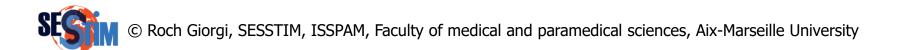
- Notations
 - $M_A M_B$: random variables
 - $\mu_A \mu_B$: theoretical differences

© Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Statistical Tests: Types of Errors

• The decision to reject or not H_0 is made under certain errors, since the true state is unknown

		Reality (unknown)		
		H ₀ is true	H ₁ is true	
Decicion from the	Don't reject H ₀	Correct inference Probability = $1 - \alpha$	Type II error Probability = β	
Decision from the statistical test result	Reject H ₀	Type I error Probability = α	Correct inference Probability = $1 - \beta$ Statistical Power	



Statistical Tests: Interpretation

• P-value

- Probability of obtaining test results as least as extreme as the results actually observed, under the assumption that the null hypothesis is correct
- $p = P[|M_A M_B| > d \text{ under } H_0]$
- Information in terms of probability of the distance between the observed value of the statistic and an expected value under H_0
- Does not measure the strength of an effect (i.e. means difference, relative risk,...)
- Interpretation of a statistical test
 - $p > \alpha$: non rejection of H_0 (non significant result –in a statistical point of view)
 - $p \leq \alpha$: rejection of H_0 , with error of type I (significant result –in a statistical point of view)

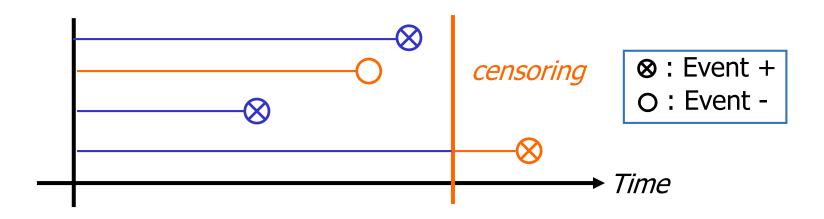
🙀 © Roch Giorgi, SESSTIM, ISSPAM, Faculty of medical and paramedical sciences, Aix-Marseille University

Statistical Tests: Choice

- Type of the features
 - Qualitative \times Qualitative
 - Sex \times Tumour stage
 - Qualitative \times Quantitative
 - Sex \times Tumour size (mm)
 - Quantitative × Quantitative
 - Biological marker (UI/mL) \times Tumour size (mm)
- Type of samples
 - Unpaired (independent): distinct "subjects"
 - Paired (dependent): same "subjects"
- Test hypotheses and methodological hypotheses of the methods

Statistical Tests: Choice

- Censored data or not-censored data
 - Censored: patient follow-up ended before the event of interest occurred
 - Event: death, recurrence of a disease,...



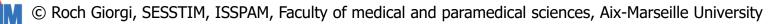
Statistical Tests: Choice

- Univariate or multivariate statistical analysis
 - Univariate: the event of interest is explained only by a single feature
 - Pharyngeal cancer = f(age)
 - Pharyngeal cancer = f(smoking)
 - Pharyngeal cancer = f(alcohol)
 - Multivariate: the event of interest is explained by several features taken together
 - Pharyngeal cancer = f(age, smocking, alcohol)

Univariate Analysis – Not-Censored Data

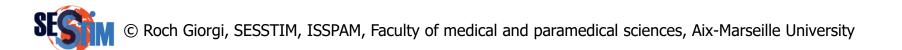
	Qualitative	Quantitative
Qualitative	Chi-squared	Means comparison * Analysis of variance
Quantitative		Correlation coefficient + Simple linear regression

- * "Large" samples: Student's t-test (paired or unpaired)
 - "Small" samples: nonparametric tests
 - Unpaired: Mann-Whitney U-test, Kruskal-Wallis test
 - Paired: Wilcoxon test, Friedman test
- + "Large" samples: Pearson's correlation
 - "Small" samples: Spearman's correlation



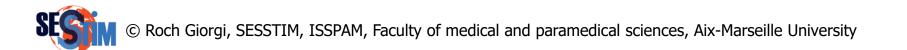
Univariate Analysis – Censored Data

- Survival analysis
 - Kaplan-Meier estimator
- Comparison of survival distributions
 - Log-Rank test



Multivariate Analysis – Not-Censored Data

Dependent Variable	Predictor features	Method
Qualitative	Qualitative or Quantitative	Logistic regression, multinomial regression
Quantitative	Qualitative or Quantitative	Multiple linear regression



Multivariate Analysis – Censored Data

• Survival analysis

- Cox proportional hazards model (qualitative of quantitative features)

