

## Le traitement de l'incertitude dans les évaluations médico-économiques



Faculté de Pharmacie, Aix Marseille Université Laboratoire SESSTIM UMR 912 (INSERM, IRD, AMU)

E-mail: carole.siani@univ-amu.fr















#### Plan

- I- Introduction
- II- Les différents types d'incertitude
  - II-1 Incertitude liée aux choix sur les paramètres du modèle
  - II-2 Incertitude liée aux fluctuations d'échantillonnage
- III- Le Ratio Coût-Efficacité Incrémental (RCEI)
- IV- Le Bénéfice Net Incrémental (BNI) sanitaire ou monétaire
- V- Approche alternative : les courbes d'acceptabilité
- VI- Conclusion
- VII- Application: exemple

### I- Introduction

- I-1 Historique
- I-2 Aujourd'hui
- I-3 Les indicateurs de décision



### I-1 Historique

- Traditionnellement, l'évaluation économique des programmes de santé reposait sur des analyses déterministes (indisponibilité des données, nécessité de recourir à des jugements d'experts).
- Au mieux, elle relevait d'analyses partiellement stochastiques où seules les données d'efficacité médicale provenaient d'échantillons
- Dans ce contexte, la méthode utilisée pour le traitement de l'incertitude des données ne pouvait être que **l'analyse de sensibilité.**



### I-1 Historique

- Depuis quelques années, on assiste au développement d'évaluations économiques de type prospectif, associées à des essais cliniques randomisés et contrôlés, fournissant des données médicales et économiques.
- Les évaluation médico-économiques en parallèle d'essais cliniques permettent :
  - des analyses entièrement stochastiques (puisque les coûts et les effets sont déterminés à partir de données échantillonnées provenant des mêmes patients).
  - une approche fondée sur le traitement statistique de l'incertitude impliquant une décision fiable.



## I-2 Aujourd'hui

Dans une perspective de contribution de l'évaluation médico-économique à la décision, il est indispensable de :

- tenir compte simultanément de l'incertitude sur la double dimension du coût et de l'efficacité de chaque programme,
- d'appliquer des tests statistiques à des indicateurs basés sur ces deux dimensions.



### I-3 Les indicateurs de décision

**Deux indicateurs** sont couramment utilisés dans la pratique de l'évaluation économique :

- 1. le Ratio Coût-Efficacité Incrémental (RCEI),
- 2. le Bénéfice Net Incrémental (**BNI**) monétaire ou sanitaire.

Une autre approche concerne les courbes d'acceptabilité.



## II- Les différents types d'incertitude

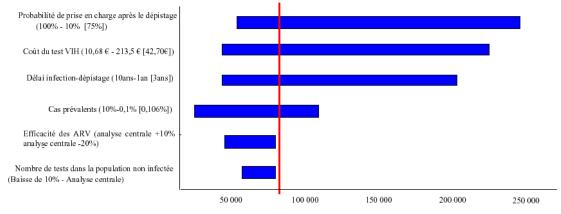
II-1 Incertitude liée aux choix sur les paramètres du modèle

II-2 Incertitude liée aux fluctuations d'échantillonnage (incertitude statistique)



## Les étapes d'une évaluation médicoéconomique

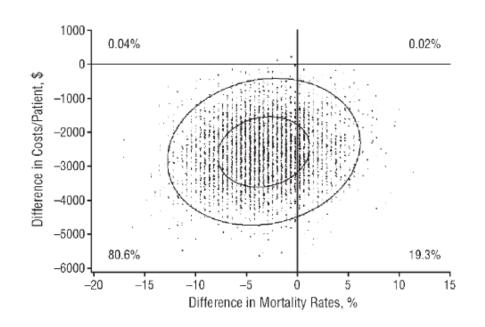
- Définir les stratégies thérapeutiques à évaluer
- Identifier les résultats cliniques pertinents des patients
- Identifier les coûts pertinents
- Mesurer et évaluer les résultats cliniques
- Mesurer et évaluer les coûts
- Tester la robustesse des résultats de l'évaluation




### Deux types d'incertitude

 Incertitude liée aux choix sur les paramètres du modèle (taux d'actualisation ...)




Figure : Présentation d'une analyse de sensibilité univariée sous la forme d'un graphique de Tornado.



2. Incertitude liée aux fluctuations d'échantillonnage



incertitude statistique

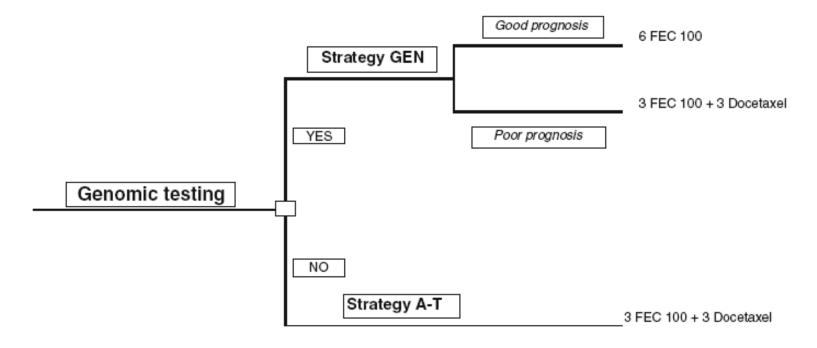




# II-1 Incertitude liée aux choix sur les paramètres du modèle

- Les analyses de sensibilité
- Un exemple d'analyse de sensibilité
- Les différents types d'analyse de sensibilité




### Les analyses de sensibilité

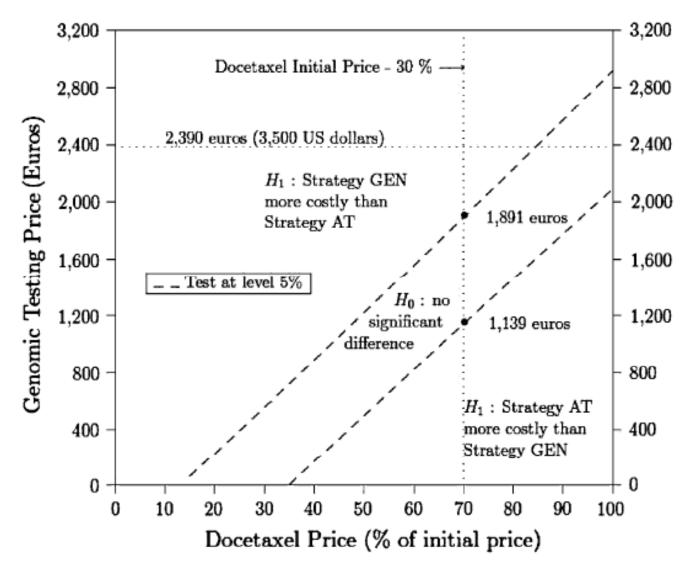
- Objectif: explorer la sensibilité des résultats de l'étude aux valeurs choisies pour certaines variables, ou aux hypothèses faites (taux d'actualisation etc.).
- Elle comprend 3 étapes :
- 1. identifier les principaux paramètres incertains,
- 2. faire des hypothèses sur les intervalles de variations vraisemblables pour les valeurs de ces paramètres (revue de la littérature, jugements d'experts, intervalles de confiance autour de la moyenne, etc.),
- 3. déterminer (de façon univariée ou multivariée) l'impact de ces variations sur le résultat final.



#### Stratégies comparées

- Innovante GEN: test génomique permettant d'orienter vers un traitement approprié: anthracyclines + taxanes ou anthracyclines seules
- ❖ Standard A-T: anthracyclines + taxanes pour des patientes avec un cancer du sein à un stade avancé






 Le génotypage a été réalisé (par Ipsogen, Marseilles, France à partir d'échantillons prélevés sur 246 patientes incluses dans l'essai clinique randomisé PACS 01 (détaillé après).

• Principal critère d'efficacité : survie libre de métastase à 5 ans.

• Les deux startégies AT et GEN produisent une efficacité similaire sur la base de ce critère.







Marino, Siani, et al., Breast Cancer Research and Treatment, 2011.

#### Résultats de l'analyse de sensibilité :

- GEN est plus coût-efficace si le prix du test génomique est inférieur à 2,090 €.
- A-T est plus coût-efficace si le prix du test génomique est supérieur à 2,919 €.
- Si on considère une baisse de 30% du docetaxel (dû au passage au génériquee),
  - **❖GEN est plus coût-efficace** si le prix du test génomique est dans l'intervalle :[ 0 €–1,139 €]
  - ❖Alors que AT est plus coût-efficace si le prix du test génomique est supérieur à 1,891 €.



## Les types d'analyse de sensibilité

On distingue 4 types d'analyse de sensibilité :

- Analyse univariée
- Analyse multivariée
- Analyse de scénario
- Analyse de seuil



## Les types d'analyse de sensibilité

#### Analyse univariée :

On fait varier une à une les estimations de chaque paramètre afin d'en étudier l'impact sur les résultats

#### Analyse multivariée (plus sophistiquée) :

Elle identifie **plusieurs** paramètres incertains et chacun peut varier dans un intervalle précisé

→ Plus réaliste s'il n'y a que quelques paramètres incertains, sinon le nombre de combinaisons possibles devient rapidement très important.



## Les types d'analyse de sensibilité

#### Analyse de scénario

On définit une série de scénarios qui représentent un sous-ensemble de l'analyse multivariée.

#### En général, on y inclut :

- l'analyse primaire (la plus vraisemblable),
- l'hypothèse la plus pessimiste (la pire),
- et l'hypothèse la plus optimiste (la meilleure).

#### Analyse de seuil

On identifie des valeurs seuils pour des paramètres importants pour la décision.



# II-2 Incertitude liée aux fluctuations d'échantillonnage

Un exemple d'essai clinique : PACS01



## Un exemple d'essai clinique : PACS01

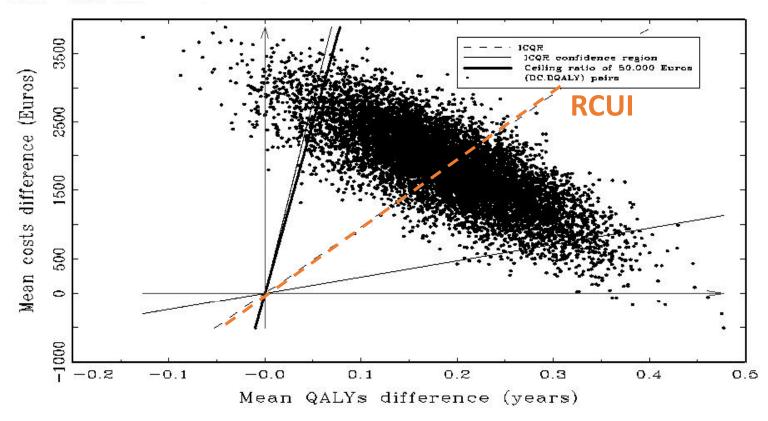
- Stratégies comparées
  - chimiothérapie innovante : anthracyclines + taxanes (3 cycles de FEC 100 suivis de 3 cycles of docetaxel)
  - chimiothérapie standard : anthracyclines seules (6 cycles de FEC100), pour des patientes avec un cancer du sein à un stade avancé
- 1999 patientes incluses dans l'essai clinique randomisé PACS 01 entre 1997 et 2000, dans 85 centres en France et en Belgique
- Principaux critères d'efficacité : survie sans rechute à 5 ans,
   survie globale à 5 ans.



### Un exemple d'essai clinique : PACS01 Les décision avec et sans traitement de l'incertitude

• Sans traitement de l'incertitude (liée à l'échantillonnage)

- **Décision :** nouveau programme coût-efficace adopté
- Avec traitement de l'incertitude


IC à 95% = 
$$[2 \ 372 \in, 55 \ 515 \in]$$

**Décision :** conclusion **pas directe** et dépend du ratio seuil que la société est disposée à payer



## Régions de Confiance du RCEI

#### **Traitements:** anthracyclines + docetaxel vs anthracyclines



Marino, P., Siani, C., et al., 2010, "Cost-effectiveness of adjuvant docetaxel for node-positive breast cancer patients: results of the PACS 01 economic study". Annals of Oncology. 21(7), 1448–1454.



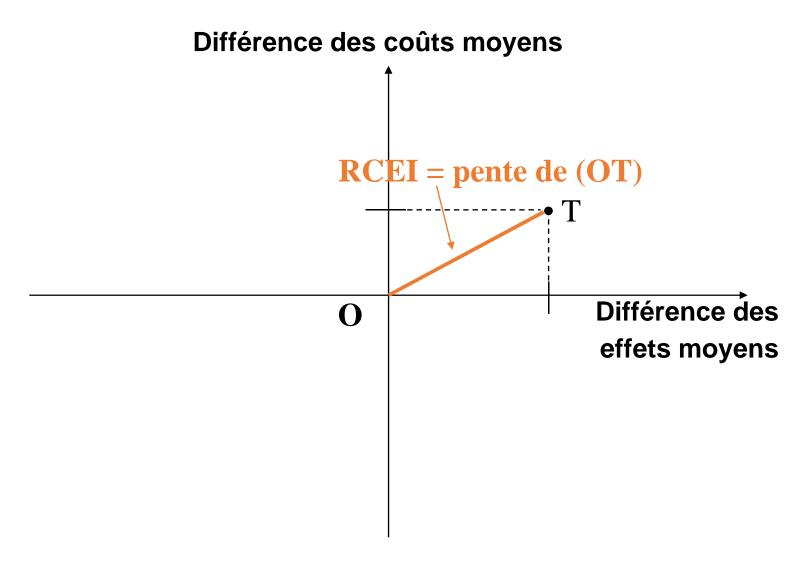
# III Le Ratio Coût-Efficacité Incrémental (RCEI)

III-1 les règles de décision dans le plan CE avec et sans traitement de l'incertitude

III-2 Les méthodes de traitement de l'incertitude autour du RCEI



### **Définition du RCEI**


 Le ratio coût-efficacité incrémental est définit comme suit :

RCEI = différence des coûts moyens / différence des effets moyens entre deux programmes.

- C'est une mesure de la productivité d'un programme de santé.
- La nature mathématique (ratio de variables aléatoires) de cet indicateur pose problèmes pour prendre en compte l'incertitude.



## Représentation graphique du RCEI





## III-1 Les règles de décision dans le plan CE avec et sans traitement de l'incertitude



## Les règles de décision sans traitement de l'incertitude

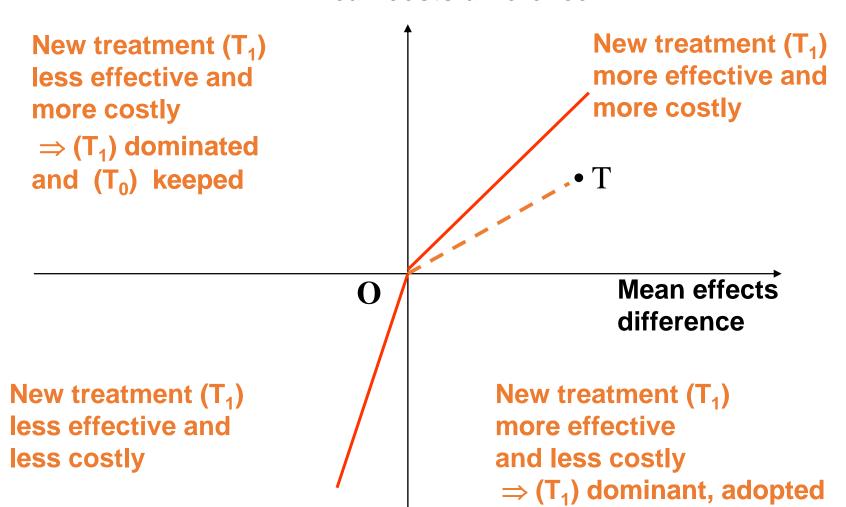
#### Différence des coûts moyens

Nouveau programme  $(T_1)$  moins efficace et plus coûteux  $\Rightarrow (T_1)$  dominé et  $(T_0)$  conservé

Nouveau programme (T<sub>1</sub>) plus efficace et plus coûteux

()

Différence des effets moyens


Nouveau programme (T<sub>1</sub>) moins efficace et moins coûteux

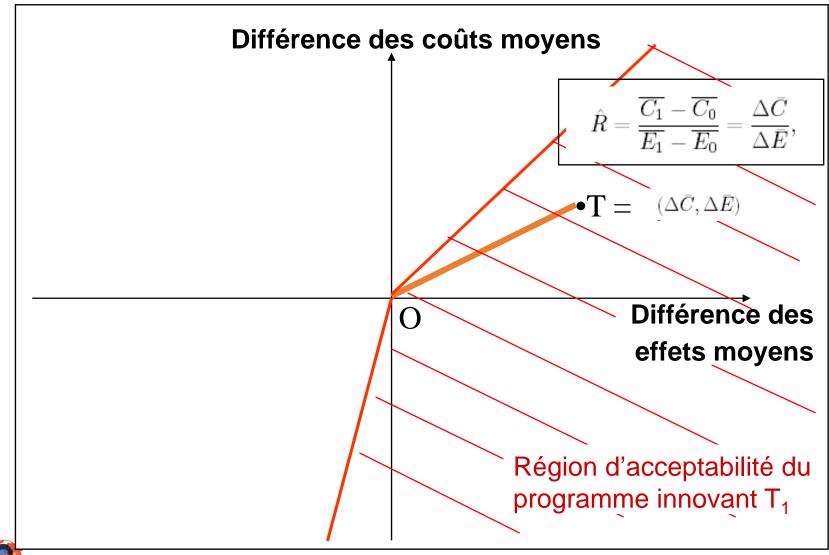
Nouveau programme (T₁) plus efficace et moins coûteux ⇒ (T₁) dominant adopté



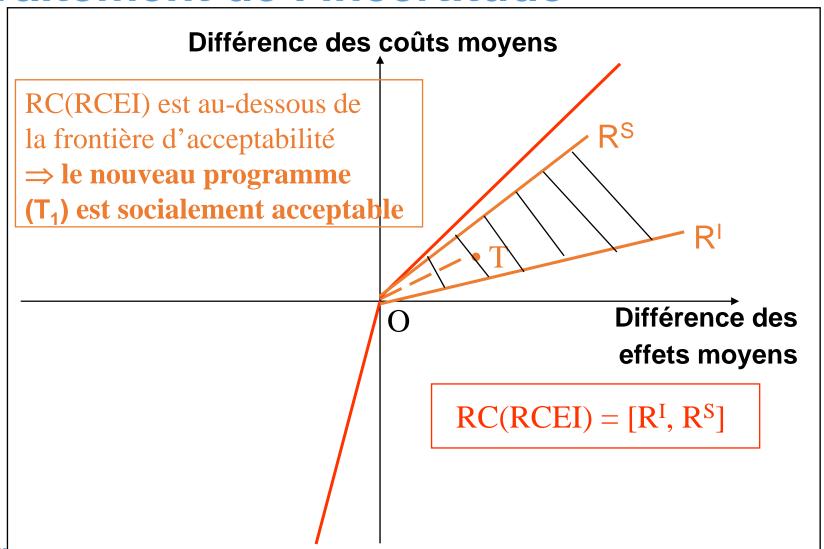
## Les règles de décision sans traitement de l'incertitude

#### Mean costs difference



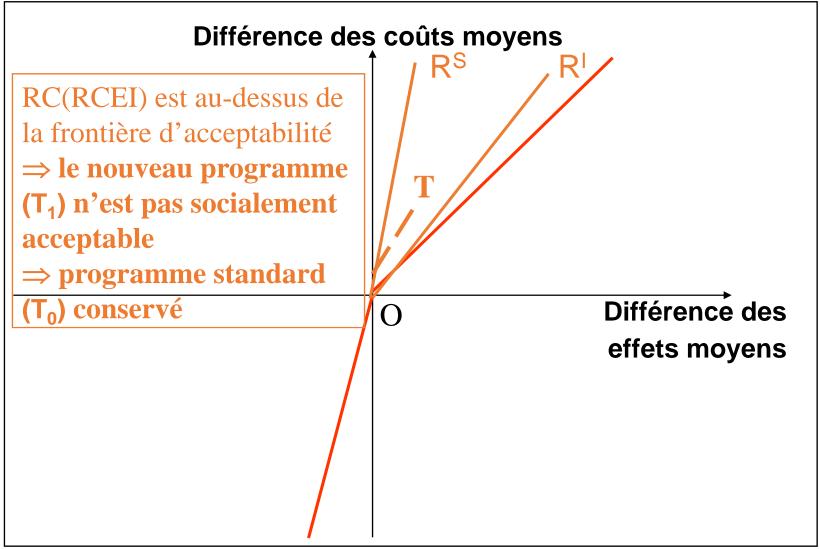



# Détermination de la frontière d'acceptabilité


- De manière exogène par la donnée :
  - d'une contrainte de budget,
  - du prix fictif (ou ratio seuil) que la société est disposée à payer par unité d'efficacité.

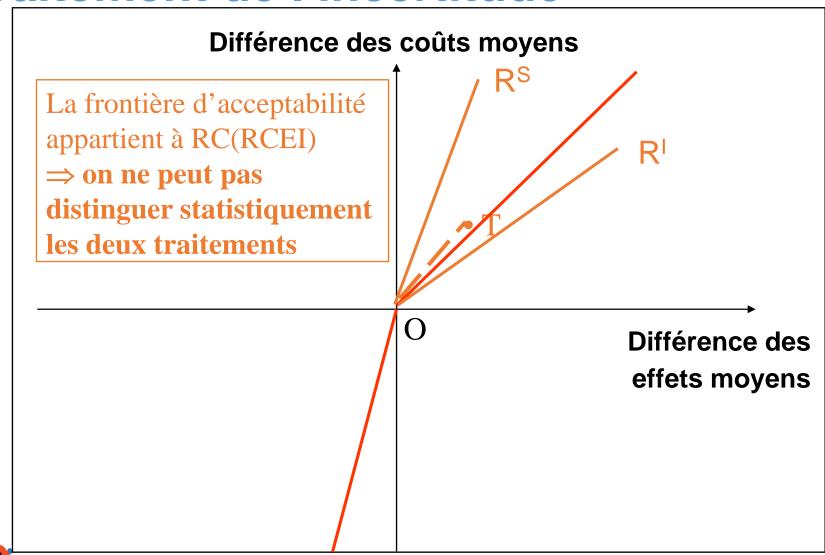


## Les règles de décision sans traitement de l'incertitude




## Les règles de décision avec traitement de l'incertitude






## Les règles de décision avec traitement de l'incertitude





## Les règles de décision avec traitement de l'incertitude





## III-2 Méthodes de traitement de l'incertitude autour du RCEI



#### Le traitement de l'incertitude du RCEI

#### Il s'agit de résoudre deux problèmes simultanément :

- 1. un problème mathématique d'instabilité des méthodes de calcul dans les cas problématiques où :
- le dénominateur du ratio s'approche de zéro statistiquement
- le couple (différence des coûts moyens, différence des efficacité moyens) s'approche de zéro statistiquement
- ce sont des cas de figures arrivant fréquemment dans la pratique de l'évaluation économique.
- 2. un problème d'utilisation de ces régions de confiance pour la prise de décision qui est loin d'être directe :
- la région de confiance fournie par le calcul mathématique n'est pas directement utilisable pour la prise de décisions
- le même RCEI peut correspondre à deux décisions opposées
   (nécessitant un développement algorithmique important).

# Résolution du problème mathématique



#### Deux types de méthodes :

- méthodes basées sur la densité du RCEI
- → méthodes bootstrap paramétrique et non paramétrique (percentile, double bootstrap-t et BCA),
- méthodes basées sur la densité du couple (différence des coûts moyens, différence des effets moyens) :
- → méthode de Fieller.



## Méthodes de calcul : Méthodes bootstrap (1)

### Bootstrap paramétrique :

Générer **une** réplication Bootstrap

$$(\Delta \bar{C}^*, \Delta \bar{E}^*)$$
 suivant une loi normale bivariée

### Bootstrap non paramétrique :

A partir des données

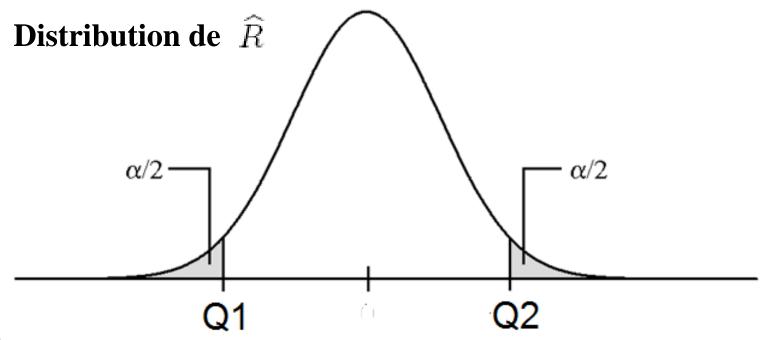
$$\{(C_1, E_1), (C_0, E_0)\},\$$

#### Tirer avec remise

$$n_1$$
  $(C_1^*, E_1^*)$  et  $n_0$   $(C_0^*, E_0^*)$ 

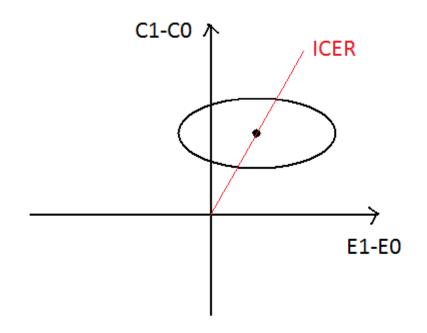
pour calculer 
$$\{(\overline{C}_1',\ \overline{E}_1'), (\overline{C}_0',\ \overline{E}_0')\}$$

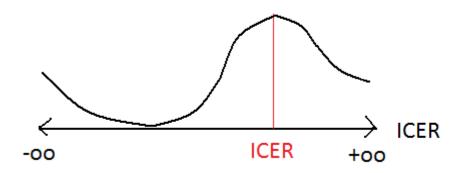
$$\widehat{R}^* = \frac{\Delta C^*}{\Delta \overline{E^*}} .$$




$$(\widehat{R_1^*}, \dots, \widehat{R_B^*})$$

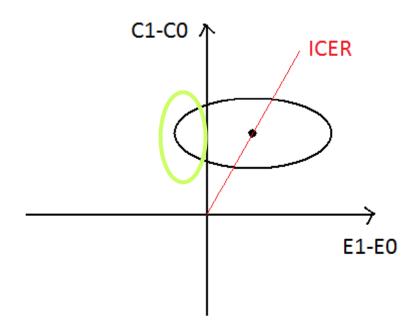
Distribution bootstrap de  $\widehat{R}$ 

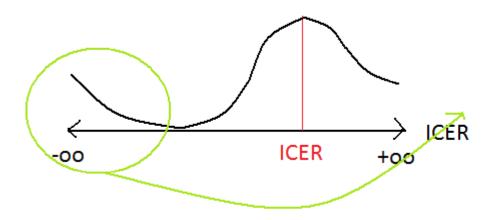

## Méthodes de calcul : Méthodes bootstrap (2)


- Méthode percentile
- Méthode percetile-t (+ correction du biais)
- Méthode BCA (+ correction de l'asymétrie)



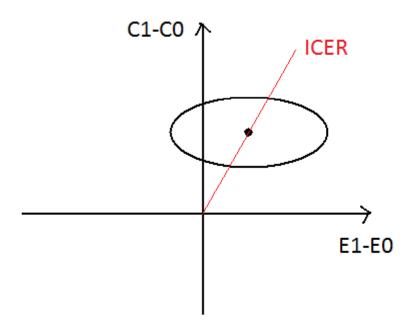


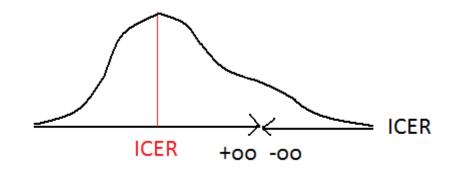

### Méthodes bootstrap ré-ordonnées









### Méthodes bootstrap ré-ordonnées



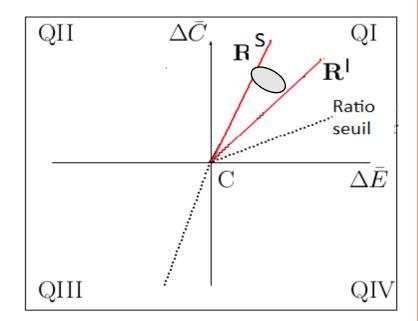




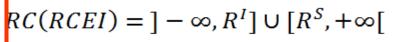

## Méthodes bootstrap ré-ordonnées

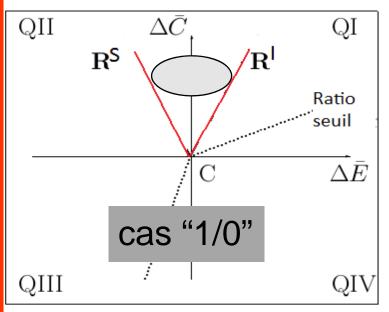




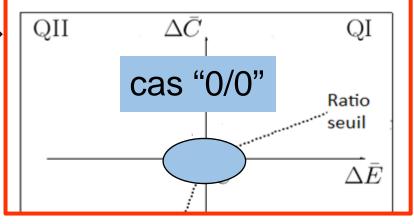



- Méthodes basées sur la densité du RCEI (méthodes bootstrap) inapplicables dans les cas :
  - \* RCEI de la forme "1/0",
  - RCEI de la forme "0/0",
  - très instables dans ces cas,
  - excluent des régions de forme non standard.
- Solution : méthode de Fieller (analytique).





### Méthodes de calcul

$$RC(RCEI) = [R^I, R^S]$$










RC(RCEI) = IR





## Méthodes de calcul : La méthode de Fieller (1)

Nous supposons que :

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\eta,\Omega) \text{ avec } \eta = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \text{ et } \Omega = \begin{pmatrix} \omega_1^2 & \omega_{12} \\ \omega_{12} & \omega_2^2 \end{pmatrix}$$

Nous voulons déterminer une région de confiance de niveau  $(1-\alpha)$  pour  $\rho=\frac{\eta_1}{\eta_2}$ .

Pour cela, nous construisons la statistique :  $\mathbf{Z} = \mathbf{X_1} - \rho \mathbf{X_2}$ ,

$$\begin{split} \frac{Z^2}{\omega_1^2 + \rho^2 \omega_2^2 - 2\rho \, \omega_{12}} &\sim \chi^2(1) \text{ sous } (H_0) : \rho = \frac{\eta_1}{\eta_2}, \\ P\left( (X_1 - \rho X_2)^2 - k_{1-\alpha} (\omega_1^2 + \rho^2 \omega_2^2 - 2\rho \, \omega_{12}) \leq 0 \right) = 1 - \alpha. \end{split}$$



## Méthodes de calcul : La méthode de Fieller (2)

Pour trouver une région de confiance de niveau  $(1-\alpha)$ , nous devons résoudre :

οù

$$\mathbf{Q}(\rho) \leq \mathbf{0},$$

$$\begin{split} Q(\rho) &= x \rho^2 + y \rho + z, \\ \text{with } x &= X_2^2 - k_{1-\alpha} \omega_2^2, \\ y &= 2(k_{1-\alpha} \omega_{12} - X_1 X_2), \\ z &= X_1^2 - k_{1-\alpha} \omega_1^2. \end{split}$$

#### Application au RCEI:

 $X_1 = \text{différence des coûts moyens} = \mu_{\Delta C}$  $X_2 = \text{différence des effets moyens} = \mu_{\Delta E}$ 



## Méthodes de calcul : La méthode de Fieller (3)

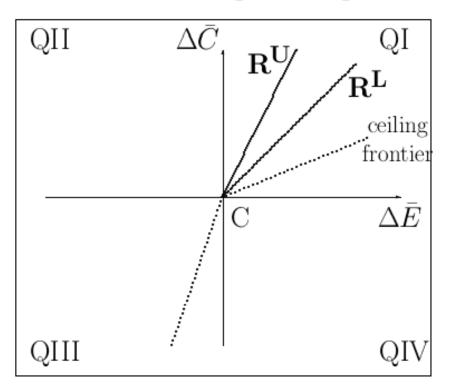
Les racines du polynôme Q (notées  ${\cal R}^L$  and  ${\cal R}^U$ ) sont données par les formules suivantes :

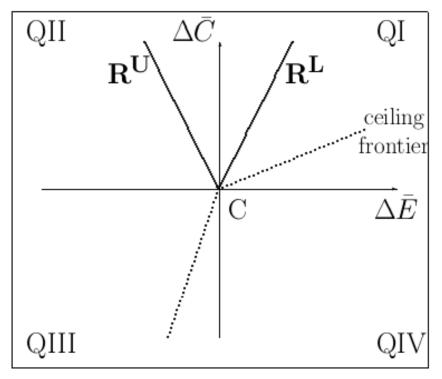
$$R^{L} = \frac{X_{1}X_{2} - k_{1-\alpha}\omega_{12} - \sqrt{(k_{1-\alpha}\omega_{12} - X_{1}X_{2})^{2} - (X_{2}^{2} - k_{1-\alpha}\omega_{2}^{2})(X_{1}^{2} - k_{1-\alpha}\omega_{1}^{2})}}{X_{2}^{2} - k_{1-\alpha}\omega_{2}^{2}},$$
(1)

$$R^{U} = \frac{X_{1}X_{2} - k_{1-\alpha}\omega_{12} + \sqrt{(k_{1-\alpha}\omega_{12} - X_{1}X_{2})^{2} - (X_{2}^{2} - k_{1-\alpha}\omega_{2}^{2})(X_{1}^{2} - k_{1-\alpha}\omega_{1}^{2})}}{X_{2}^{2} - k_{1-\alpha}\omega_{2}^{2}}.$$
(2)



# Les formes des régions de confiance obtenues avec la méthode de Fieller (1)


|       | $\Delta < 0$   | $\Delta = 0$   | $\Delta > 0$                       |
|-------|----------------|----------------|------------------------------------|
| x > 0 | cas impossible | cas impossible | $\left[R^L, R^U\right]$            |
| x = 0 | cas impossible | $\mathbb{R}$   | demi-droite                        |
| x < 0 | $\mathbb{R}$   | $\mathbb{R}$   | $(-\infty,R^U] \cup [R^L,+\infty)$ |




# Les formes des régions de confiance obtenues avec la méthode de Fieller (2)

$$CR(R) = [R^L, R^U]$$

$$\mathbf{CR}(\mathbf{R}) = \left(-\infty, \mathbf{R}^{\mathbf{U}}\right] \cup \left[\mathbf{R}^{\mathbf{L}}, +\infty\right)$$

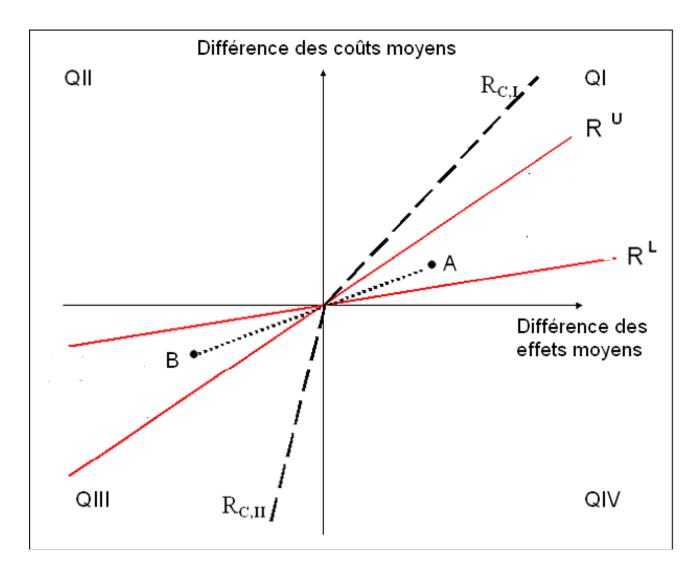






### Algorithme de la méthode de Fieller

Pour construire une région de confiance du RCEI avec la méthode de Fieller, on procède comme suit :


- 1) Déterminer un (ou plusieurs) niveau(x) de confiance
- **2)** Calculer le discriminant du polynôme  $\Delta$ . Si  $\Delta < 0$ , la région de confiance obtenue est la droite réelle et c'est fini.
- 3) Si  $\Delta$  > 0, calculer la moyenne et la matrice de variance-covariance de  $(\Delta \bar{C}, \Delta \bar{E})$
- 4) Calculer les coefficients du polynôme x, y et z.
- 5) Calculer les racines du polynômes Q.
- 6) Déterminer la forme de la région de confiance selon le signe de x.

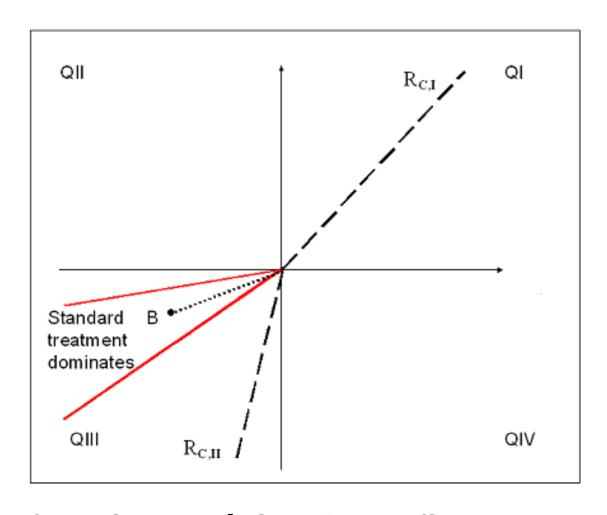


## Résolution du problème de décision




### Le problème de la décision-miroir




**⇒** région fournie par le calcul pas directement utilisable

## Le problème de la décision-miroir



**⇒** fournir une région de confiance sous forme d'un simple secteur orienté

### Le problème de la décision-miroir



⇒ fournir une région de confiance sous forme d'un simple secteur orienté

# Résolution du problème mathématique et du problème de décision



# Algorithme de la méthode de Fieller *tronqu*ée

Pour construire une région de confiance du RCEI :

- 1) Déterminer un (ou plusieurs) niveau(x) de confiance
- 2) Calculer le discriminant du polynôme  $\Delta$ . Si  $\Delta$  < 0, la région de confiance est la droite réelle et c'est fini.
- 3) Si  $\Delta$  > 0, calculer la moyenne et la matrice de variance-covariance de  $(\Delta \bar{C}, \Delta \bar{E})$  .
- 4) Calculer les coefficients du polynôme x, y et z.
- 5) Calculer les racines du polynômes Q.
- 6) Déterminer la forme de la région de confiance selon le signe de x.
- **7)** Déterminer la direction du simple secteur contenant le couple  $(\Delta \bar{C}, \Delta \bar{E})$



### Résultats

• La méthode de Fieller tronquée est : mathématiquement applicable et utilisable pour la décision quelle que soit la forme de la région de confiance.

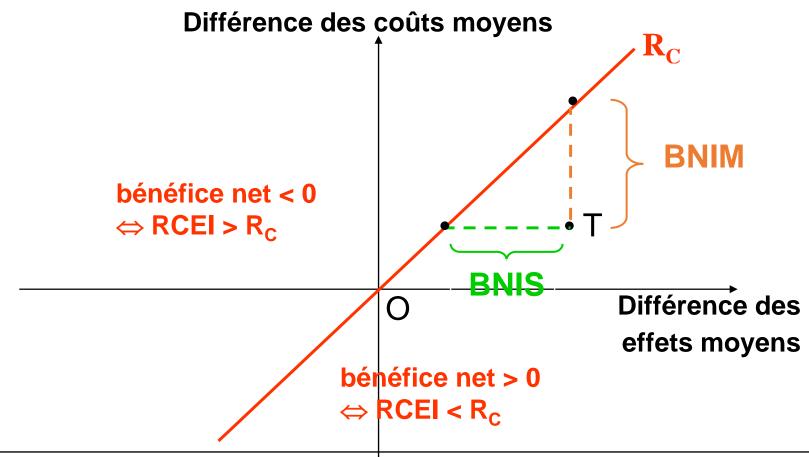
- Elle est robuste dans toutes les situations :
  - différence d'effet proche de zéro,
  - données fortement asymétriques,
  - faible taille d'échantillons.



### IV- Le Bénéfice Net Incrémental (BNI)

IV-1 les règles de décision dans le plan CE avec et sans traitement de l'incertitude

IV-2 Les méthodes de traitement de l'incertitude autour du BNI (BNIS et BNIM)



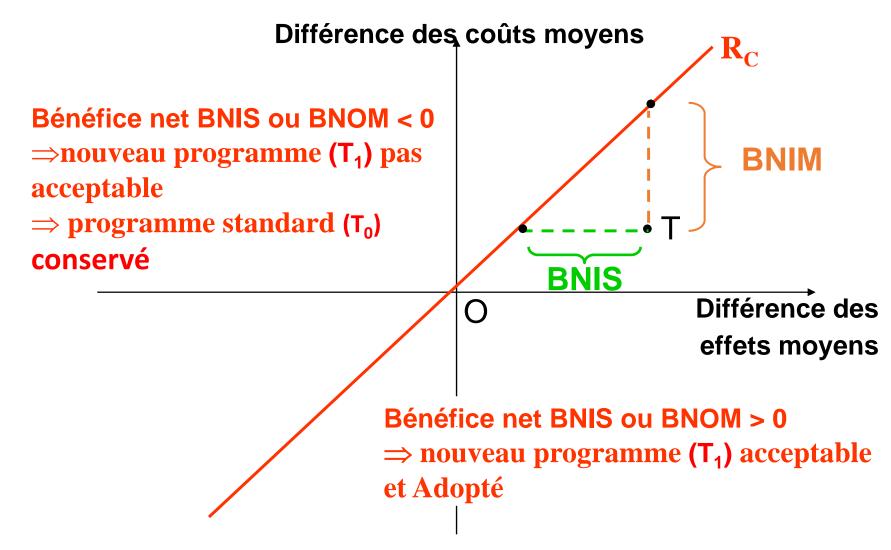

### **Définition du BNI**

- Le bénéfice net incrémental monétaire (BNIM)
- BNIM = R<sub>C</sub> différence des effets moyens différence des coûts moyens =  $R_C \mu_{\Delta E} \mu_{\Delta C}$
- Le bénéfice net incrémental sanitaire (BNIS)
- BNIS = différence des effets movens différence des coûts moyens / R\_C =  $\mu_{\Delta E} \mu_{\Delta C}/R_C$
- R<sub>C</sub>: ratio maximum que la société est disposée à payer pour une unité d'efficacité supplémentaire.



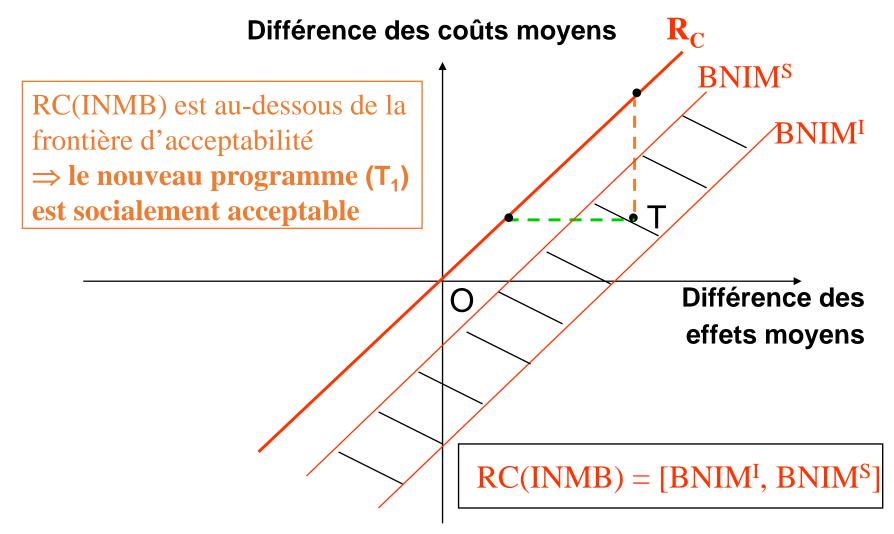
## Représentation graphique du BNI




BNIM = R<sub>C</sub> différence des effets moyens – différence des coûts moyens BNIS = différence des effets moyens – différence des coûts moyens / R<sub>C</sub>

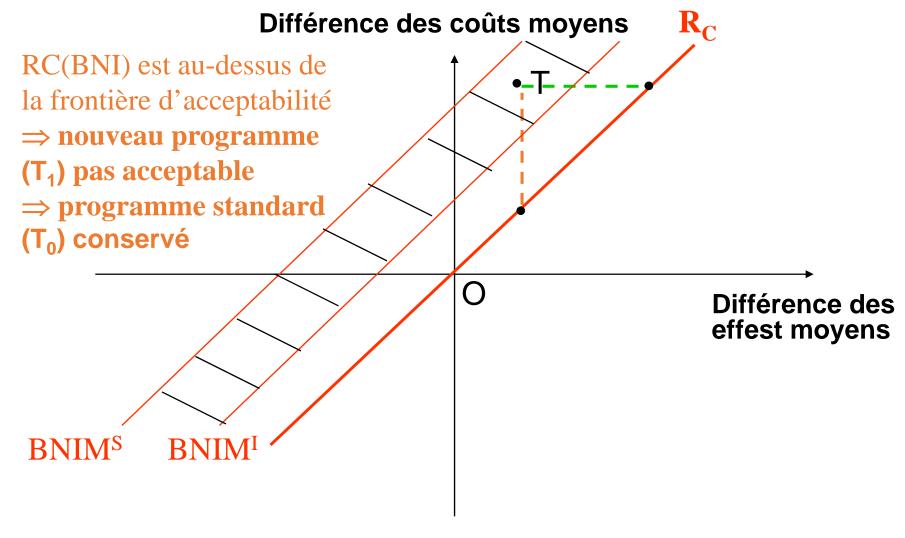


# IV-1 Les règles de décision dans le plan CE avec et sans traitement de l'incertitude




# Les règles de décision sans traitement de l'incertitude






# Les règles de décision avec traitement de l'incertitude





## Les règles de décision avec traitement de l'incertitude





# Les règles de décision avec traitement de l'incertitude

Différence des coûts moyens La frontière d'acceptabilité appartient à RC(BNI)  $\Rightarrow$  on ne peut pas distinguer statistiquement les deux traitements Différence des effets moyens **BNIM**<sup>I</sup>



# IV-2 Les méthodes de traitement de l'incertitude autour du BNI (BNIS et BNIM)



Le BNI monétaire (noté INMB) est estimé par sa moyenne empirique:

$$\widehat{INMB} = R_C (\bar{E}_1 - \bar{E}_0) - (\bar{C}_1 - \bar{C}_0).$$

Sa variance est égale à :

$$Var(\widehat{INMB}) = R_C^2 Var(\Delta \bar{E}) + Var(\Delta \bar{C}) - 2R_C cov(\Delta \bar{E}, \Delta \bar{C}),$$

$$= \sum_{j=0}^{1} \frac{1}{n_j} \left( R_C^2 \sigma_{E_j}^2 + \sigma_{C_j}^2 - 2R_C \sigma_{C_j E_j} \right),$$

Sa variance estimée :

$$\widehat{var}(\widehat{INMB}) = \sum_{j=0}^{1} \frac{1}{n_j} (R_C^2 s_{E_j}^2 + s_{C_j}^2 - 2R_C s_{C_j E_j}),$$



### Approche paramétrique

$$\widehat{|INMB} \sim N\left(\widehat{INMB}, Var(\widehat{INMB})\right),$$
 TCL  $\Rightarrow$  normalité asymptotique

Un intervalle de confiance pour le BNI de couverture  $(1-\alpha)$ , peut être déterminé par :

$$CI(INMB) = \left(\widehat{INMB} \pm z_{(\alpha/2)} \sqrt{\widehat{var}(\widehat{INMB})}\right),$$

où  $z_{(\alpha/2)}$  est le quantile d'ordre  $1-(\alpha/2)$  de la loi normale standard ( = 1.96 pour  $\alpha$  = 5%).



### Approche non paramétrique (méthodes bootstrap)

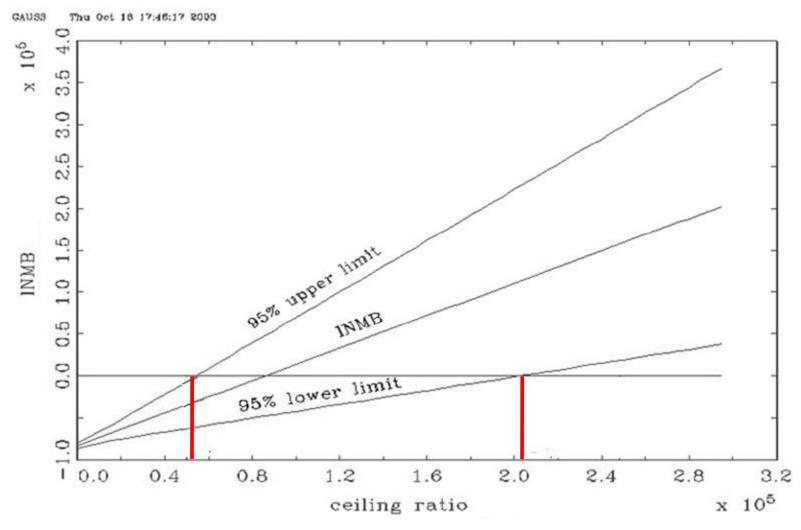
- 1) Tirer avec remise  $n_1$  (resp.  $n_0$ ) couples (coût, effet) dans les échantillons recevant le traitement  $(T_1)$  (resp.  $(T_0)$ )
- 2) Calculer les simulations bootstrap  $: \bar{C}_1^*, \bar{E}_1^*, \bar{C}_0^*$  et  $\bar{E}_0^*,$
- 3) Calculer la réplication bootstrap BNIM\* de BNI estimé par :

$$INMB^* = R_C(\bar{E}_1^* - \bar{E}_0^*) - (\bar{C}_1^* - \bar{C}_0^*)$$
.

4) Répéter 1. à 3. B fois pour obtenir le vecteur :

$$(INMB_1^*, \dots, INMB_B^*)$$



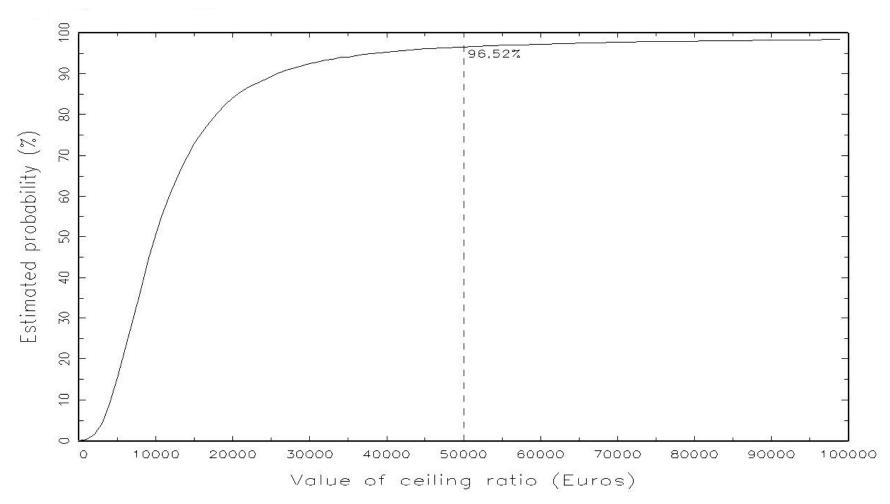

### L'approche des bénéfices nets nécessite :

- la linéarité de la frontière R<sub>C</sub> (pas réaliste)
- de donner une valeur particulière à R<sub>C</sub>,
- car par définition le bénéfice net dépend de R<sub>C</sub>:

BNIM =  $R_c$  différence des effets moyens – différence des coûts moyens,

BNIS = différence des effets moyens – différence des coûts moyens /  $R_c$ .








## V- Approche alternative : les courbes d'acceptabilité



### Les courbes d'acceptabilité : Probabilité estimée en fonction de Rc





Marino, P., Siani, C., et al., 2010, "Annals of Oncology. 21(7), 1448-1454.

## Les courbes d'acceptabilité : Construction (1)

Calcul à partir du RCEI :

$$CE_{acc}(R_C) = Pr(\widehat{R} < R_C | \Delta \overline{E} > 0) + Pr(\widehat{R} > R_C | \Delta \overline{E} < 0),$$
  
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{R_C \Delta \overline{E}} f_{\Delta C, \Delta E}(\Delta \overline{c}, \Delta \overline{e}) d\Delta \overline{c} d\Delta \overline{e},$$

Calcul à partir du BNI (noté INMB) :

$$CE_{acc}(R_C) = Pr(\widehat{INMB} > 0),$$
  
=  $\int_0^{+\infty} \widehat{f_{INMB}(R_C)}(\widehat{inmb}(R_C)) \widehat{dinmb}(R_C),$ 



## Les courbes d'acceptabilité : Construction (2)

#### Approche paramétrique

$$(\widehat{INMB}(R_C) - INMB(R_C))/\sigma_{\widehat{INMB}(R_C)} \sim N(0, 1).$$

$$\widehat{CE}_{acc}(R_C) = \Phi\left(\frac{\widehat{inmb}(R_C)}{\widehat{Var}(\widehat{INMB}(R_C))}\right),\,$$

Avec  $\widehat{Var}(\widehat{INMB}(R_C))$  désigne un estimateur de la variance de  $\widehat{INMB}$  .



## Les courbes d'acceptabilité : Construction (3)

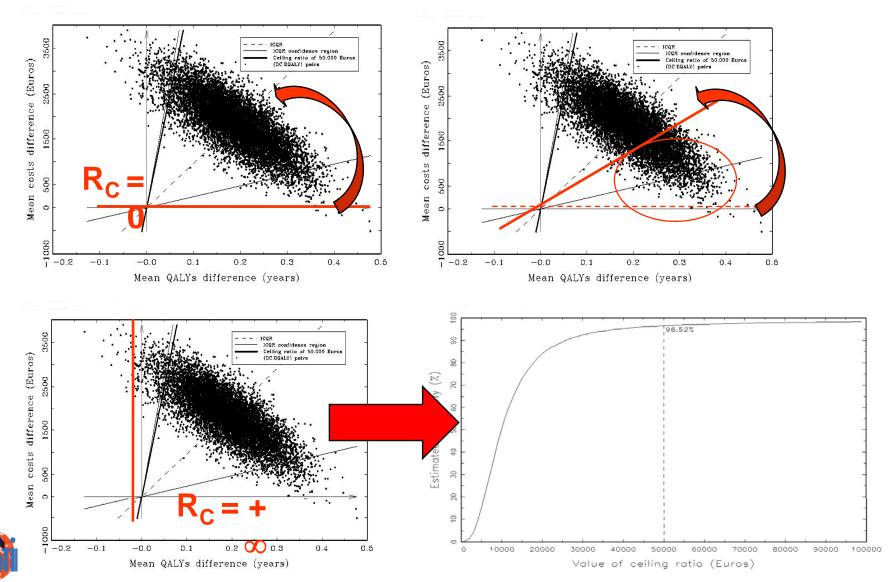
#### Approche non paramétrique

- 1) On fixe une valeur pour le ratio seuil Rc.
- 2) On fait un grand nombre de simulations et on compte le nombre de points du nuage pour lesquels :
  - Le RCEI se situe au-dessous du seuil Rc,
  - ou Le BNI est positif.
- 3) On fait varier Rc et on repart à l'étape 1).

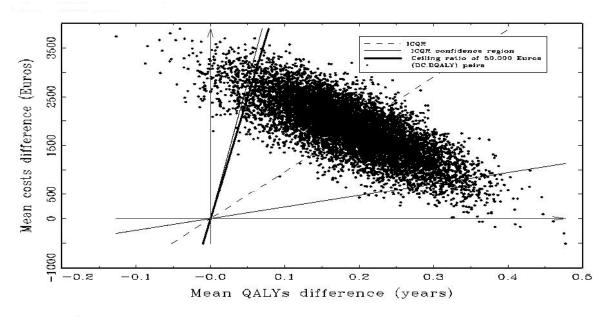


## Les courbes d'accep4abilité : Construction (4)

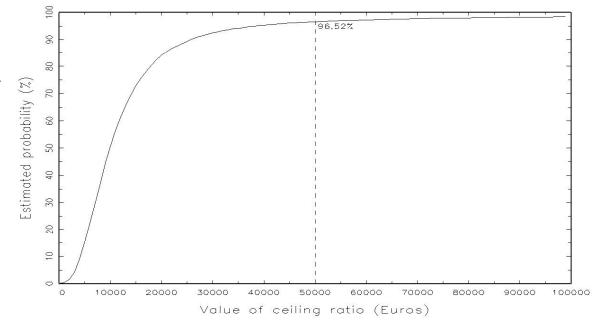
• Etape 2 à partir du RCEI :


$$CE_{acc}^*(R_C) = \frac{1}{B} \sum_{b=1}^{B} \left[ I(R_b^* < R_C, \Delta \bar{E}_b^* > 0) + I(R_b^* > R_C, \Delta \bar{E}_b^* < 0) \right],$$

Etape 2 à partir du BNI :


$$CE_{acc}^*(R_C) = \frac{1}{B} \sum_{b=1}^{B} I(INMB_b^*(R_C) > 0),$$




## Les courbes d'acceptabilité : Construction (5)



#### Les courbes d'acceptabilité



Marino, Siani et al., Annals of Oncology, 2010.





#### VI- Conclusion

VI-1 Synthèse

VI-2 recommandations de la HAS



## VI-1 Synthèse

- Attention au sujet des résultats des ACE basées sur le RCEI ponctuel seulement
- ⇒ les conclusions de ces analyses sont différentes si on prend en compte l'incertitude statistique ou non !!!
- Il est indispensable de prendre en compte l'incertitude statistique si on veut réalise une décision fiable.
- Recourir également aux analyses de sensibilité.



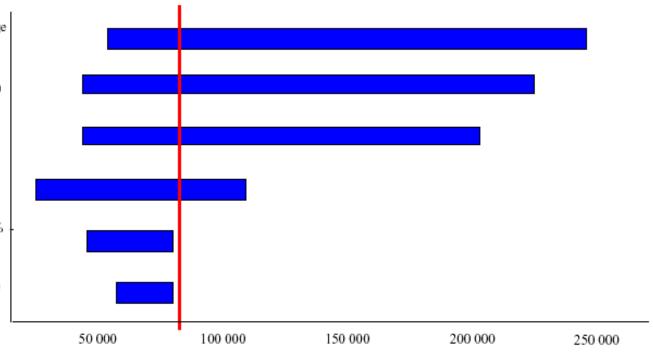
- 1) Analyse déterministe : graphique de Tornado (représentation graphique d'une analyse de sensibilité déterministe univariée)
- 2) Analyse probabiliste : représentation du nuage de point dans le repère résultat-coût et ellipses de confiance
- 3) Analyse probabiliste : représentation de la courbe d'acceptabilité



#### 1) Diagramme de Tornado

Figure : Présentation d'une analyse de sensibilité univariée sous la forme d'un graphique de Tornado.

Probabilité de prise en charge après le dépistage (100% - 10% [75%])


Coût du test VIH (10,68 € - 213,5 € [42,70€])

Délai infection-dépistage (10ans-1an [3ans])

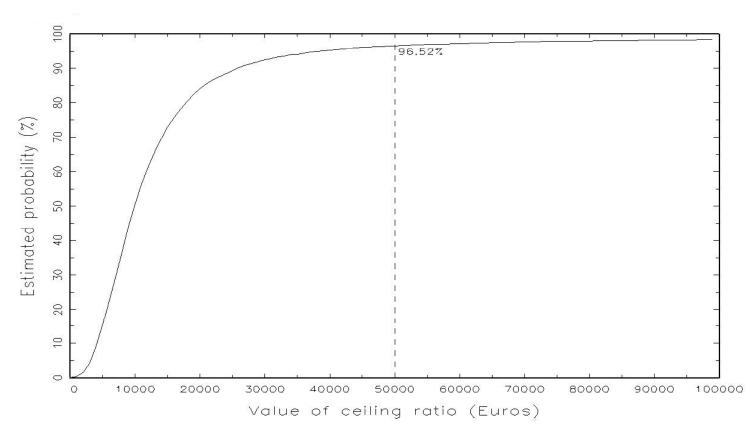
Cas prévalents (10%-0,1% [0,106%])

Efficacité des ARV (analyse centrale +10% analyse centrale -20%)

Nombre de tests dans la population non infectée (Baisse de 10% - Analyse centrale)






#### 2) Analyse probabiliste

- Ellipses de confiance à 50% et 95%
- Probabilité estimée d'appartenir à chaque cadran du plan CE.





#### 3) Courbe d'acceptabilité





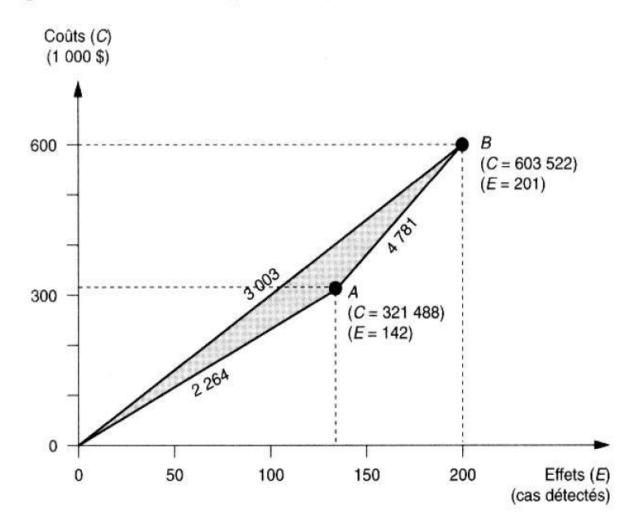
## VI- Application : Exemple et exercice



# Les règles de décision sans traitement de l'incertitude : exemple

**Tableau** . **1.** Evaluation économique comparative de deux stratégies de diagnostic de thrombose d'une veine profonde

| Programme                                                           | Coûts<br>(\$ US) | Résultats<br>(Nombre de<br>diagnostics corrects) | Ratio coût-résultat<br>(\$ par<br>diagnostic correct) |
|---------------------------------------------------------------------|------------------|--------------------------------------------------|-------------------------------------------------------|
| 1. IPG* seule                                                       | 321 488          | 142                                              | 2 264                                                 |
| <ol> <li>IPG et phlébographie,<br/>si l'IPG est négative</li> </ol> | 603 552          | 201                                              | 3 003                                                 |
| 3. Différence<br>(du programme 2 par<br>rapport au programme 1)     | 282 064          | 59                                               | 4 781                                                 |


<sup>\*</sup> IPG : Impédance phlétysmographique

Données tirées du tableau 1, Hull et al. (1981).



# Les règles de décision sans traitement de l'incertitude : exemple

Figure Ratios coût-efficacité moyens et différentiels





## Merci pour votre attention et bonne continuation



### **Bibliographie**

- Béresniak A, Duru G. Economie de la Santé. 5e édition, Masson, 2001.
- Drummond MF, O'Brien BJ, Stoddart GL, Torrance GW. Méthodes d'évaluation économique des programmes de santé. Economica, 1998.
  - traduction de la 2e édition d'un livre dont la 3e édition est paru en 2005 : Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. Methods for the Economic Evaluation of Health Care Programmes. 3rd edition, Oxford University Press, 2005.



### **Bibliographie**

- Marino, P., Siani, C., Bertucci, F., Roche, H., Martin, A.-L., Viens, P., Seror, V., 2011 "Economic issues involved in integrating genomic testing into clinical care: the case of genomic testing to guide decision-making about chemotherapy for breast cancer patients". Breast Cancer Research and Treatment.
- Marino, P., Siani, C., Roche, H., Protiere, C., Fumoleau, P., Spielmann, M., Martin, A.-L., Viens, P., Le Corroller Soriano, A.-G., 2010, "Cost-effectiveness of adjuvant docetaxel for node-positive breast cancer patients: results of the PACS 01 economic study". Annals of Oncology. 21(7), 1448–1454.



### **Bibliographie**

- Siani, C., and de Peretti, C., 2006, "How to make decision with the Incremental Cost-Effectiveness Ratio under uncertainty?". Health and System Science, 9(1-2), 111-145.
- de Peretti, C. and Siani, C., 2006, "The performance of Fieller's method in problematic cases often occuring in practice". Health and System Science, 9(1-2), 205-226.
- Marino, P., Siani, C., Roché, H. and Moatti, J.P., 2005, "The impact of uncertainty in cost-effectiveness analysis of medical strategies: the case of high dose chemotherapy for breast cancer patients", The International Journal of Technology Assessment in Health Care, 21(3).