

# Artificial intelligence and health informatics

### Dr Jean-Charles DUFOUR

Last update : 26 october 2021

SESSTIM, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France <u>https://sesstim.univ-amu.fr/</u>



La science pour la santé \_\_\_\_\_ From science to health

Institut de Recherche pour le Développement F R A N C E

Aix\*Marseille Université Socialement engagée

# Outline

- AI (in the field of health informatics)
  - Definition
  - Brief history
  - AI typologies
  - Potential for AI in healthcare and public health
  - Challenges
- Data for AI
  - What are data ?
  - Notions of information systems interoperability
  - Data reusability



## Definition

*"The capacity of computers or other machines to exhibit or simulate intelligent behavior*; *the field of study concerned with this*" (Oxford English Dictionary)

"Systems that **mimic cognitive functions** generally associated with human attributes such as learning, speech and problem solving" (Russel & Norvig's book Artificial Intelligence)

# Other definitions are focused on AI goal types, tasks, applications and methods (In their recent review Collins et al. list 28 definitions !)

Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research : A systematic literature review and research agenda. *International Journal of Information Management, 60*, 102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383



# Definition



### **BIG DATA**

Capable of processing massive amounts of **structured and unstructured data** which can change constantly

Ability to **learn** based on historical patterns, expert input and feed-back loop





Ability to reason (deductive or inductive) and to draw inferences based on situation. **Context driven awareness** of system.

Capable of analyzing and **solving complex problems** in special-purpose and general-purpose domain

### PROBLEM SOLVING

Image from deloitte.com



# **Components** of AI

#### Applications

- Image recognition
- Speech recognition
- Chatbots
- Natural language generation
- Sentiment analysis

#### Types of models

- Deep learning
- Machine learning
- Neural networks

### Software/hardware for training and running models

- GPUs
- Parallel processing tools (like Spark)
- Cloud data storage and compute platforms

### Programming languages for building models

- Python
- TensorFlow
- Java
- C





ILLUSTRATION: SORBETTO/GETTY IMAGES

# Definition

Image from online.king.edu



"A transdisciplinary study of the data flow and processing into more abstract forms such as **information**, knowledge, Health Informatics? and wisdom along with the associated systems needed to synthesize or develop decision support systems for the purpose of helping the healthcare management processes achieve better outcomes in healthcare delivery." (Wan T. & Gurupur V.)

[2020, Understanding the difference between healthcare informatics and healthcare data analytics in the present state of health care management, https://doi.org/10.1177/2333392820952668





# Definition

Image from online.king.edu



"A transdisciplinary study of the data flow and processing into more abstract forms such as information, knowledge, and wisdom along with the associated systems needed to synthesize or develop decision support systems for the purpose of helping the healthcare management processes achieve better outcomes in healthcare delivery." (Wan T. & Gurupur V.)

[2020, Understanding the difference between healthcare informatics and healthcare data analytics in the present state of health care management, https://doi.org/10.1177/2333392820952668]

## **Health Informatics**

(Health Information System)

How and why behing health IT

# Health IT

(Health InformationTechnologies)

Use of technology in health care





received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 727552 EUUSEHEALTHWORK



# Brief (pre)history



# 1642 : First mechanical calculating machine built by B. Pascal

see <a href="https://youtu.be/GX4RQK\_fQc">https://youtu.be/hSl2WFfCTD8</a> (in French language) if you're curious



# 1837 : First design for a programmable machine by C. Baddage

# **Brief history**



1943 : Foundations of neural networks by W. McCulloch and W. Pitts



# 1950 : the Turing test and Turing machine by A. Turing

see https://youtu.be/TryOC83PH1g if you're curious about Chinese Room vs Turing test



1955 : "Dartmouth Summer Research Project on <u>Artificial Intelligence</u>" by J. McCarthy, M. <u>Minsky, N. Rochester and C. Shannon</u>

# **Brief history**



"The hope is that, in not too many years, human brains and computing machines will be coupled together very tightly, and that the resulting partnership will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today." (1960 J.C.R. Licklider)



# Brief history : Connectionist and symbolic approaches



From D. Cardon, JP Cointet, A. Mazières. Neurons spike back - The invention of inductive machines and the controverse of Artificial Intelligence. <a href="https://neurovenge.antonomase.fr/">https://neurovenge.antonomase.fr/</a>



# Brief history : health informatics expert systems

1971 : HELP – (*Salt Lake City*) by Wamer HR, Olnstead CM, Rutherford BD

https://core.ac.uk/download/pdf/276276919.pdf

# 1972-82 : INTERNIST-1 and its successor, Quick Medical Reference (QMR) – (*Pittsburgh*) by HE Pople, JD Myers, RA Miller

http://www.skateboardingalice.com/papers/1986\_Miller.pdf

1975 : MYCIN – (*Stanford*) by EH Shortliffe and BG Buchanan

https://doi.org/10.1016/0025-5564(75)90047-4

### 1984 : DXplain – (*Massachusetts General Hospital*) by Barnett GO, Cimino JJ et al.

http://www.mghlcs.org/projects/dxplain/

...and others... (see https://www.clinfowiki.org/wiki/index.php/Timeline of the Development of Clinical Decision Support)



# **Brief history**



Image from Mohamed Hanini. The State of Artificial Intelligence and Its Applications. https://koiosintelligence.ca/the-state-of-artificial-intelligence-and-its-applications/



# IA typologies

Several possible typologies:

- « Coverage ambitions »
- Objectives pursued
- Applications focused
- Methods used





Image from datakeen.co

# Super, General and Narrow AI

### • Super AI :

- Machines that are much more smarter than humans
- Fictional, singularity theory
- General or strong AI :
  - Machines that would be able to apply apply knowledge and skills in different contexts
  - A small research community exist (Deepmind, Cyc, OpenAI,...)
- Narrow AI
  - Algorithm specialized at a single task
  - Many systems already exists (playing chess, driving car, face recognition, surgical robots, Skin or X-ray images analysis, ...

| <b>Narrow</b><br><b>AI</b><br>Specific | <b>Machine</b><br>Learns on p | <b>General A</b><br>~ Human                                                 |                             |
|----------------------------------------|-------------------------------|-----------------------------------------------------------------------------|-----------------------------|
| tasks                                  | A                             | <b>eep Learning</b><br>particular learning structure<br>eep neural networks | <b>Super Al</b><br>>> Human |
|                                        |                               |                                                                             |                             |



### Hype Cycle for Artificial Intelligence, 2020



### gartner.com/SmarterWithGartner



Source: Gartner © 2020 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner and Hype Cycle are registered trademarks of Gartner, Inc. and its affiliates in the U.S.



From : "Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril". National Academy of Medicine. https://nam.edu/artificial-intelligence-special-publication/



Artificial Intelligence



From Contreras I, Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J Med Internet Res 2018;20(5):e10775. doi: 10.2196/10775.











From https://www.asimovinstitute.org/neural-network-zoo/



# Types of AI relevant to health (1)

- Machine learning neural networks and deep learning
  - Precision medicine
  - Predicting what treatment protocols are likely to succeed
  - Prognosticate the evolution of a pathology
  - Recognition of potentially lesions in images
- Natural language processing
  - Statistical NLP (based on deep learning) vs Semantic NLP
  - Creation, understanding and classification of clinical documents
  - Conversational AI
  - 80% of free text in medical records



NLP turning texts to machine-readable structured data, which can then be analysed by ML techniques



From https://synthesis-solutions.com/artificial\_intelligence\_in\_healthcare.html





Kohane IS. Using electronic health records to drive discovery in disease genomics. Nat Rev Genet. 2011 Jun;12(6):417-28.

Figure 1 | **From clinical notes to structured phenotypes.** Natural language processing (NLP) identifies various concept types in the textual records that are associated with each patient for each medical record.



# Types of AI relevant to health (2)

### Rule-based expert systems

| IF   | the stain of the organism is gram negative        |                                               |  |
|------|---------------------------------------------------|-----------------------------------------------|--|
| AND  | the morphology of the organism is rod             |                                               |  |
| AND  | the aerobiocity of the organism is gram anaerobic |                                               |  |
| THEN | there is strong evidence (0.8)                    |                                               |  |
|      | that th                                           | e class of the organism is enterobacteriaceae |  |
| MYC  | IN For                                            | mat                                           |  |
| IF   | (AND                                              | (SAME CNTEXT GRAM GRAMNEG)                    |  |
|      |                                                   | (SAME CNTEXT MORPH ROD)                       |  |
|      |                                                   | (SAME CNTEXT AIR AEROBIC)                     |  |
| THEN | (CONC                                             | LUDE CNTEXT CLASS ENTEROBACTERIACEAE          |  |
|      | TATT                                              | LY .8)                                        |  |

From Seyed Hashem Davarpanah Davarpanah@usc.ac.ir University of Science and Culture. Course Material.

#### data:

/\* read the diastolic blood pressure \*/ diastolic blood pressure := read last {diastolic blood pressure}; /\* the value in braces is specific to your runtime environment \*/ /\* If the height is lower than height threshold, output a message \*/ diastolic pressure threshold := 60; stdout dest := destination {stdout}; ;; evoke: null event;; logic: if (diastolic blood pressure is not number) then conclude false; endif; if (diastolic blood pressure >= diastolic pressure threshold) then conclude true; else conclude false; endif; ;; action: write "Your Diastolic Blood Pressure is too low (hypotension)"

From Wikipedia. https://en.wikipedia.org/wiki/Arden\_syntax





Adapted from Sutton, R.T., Pincock, D., Baumgart, D.C. *et al.* An overview of clinical decision support systems: benefits, risks, and strategies for success. *npj Digit. Med.* **3**, 17 (2020). https://doi-org.proxy.insermbiblio.inist.fr/10.1038/s41746-020-0221-y





Machine learning models: white- and black-boxes. Increasing model complexity can lead to better approximation of functions and enhance prediction performance, but can lead to a decrease in interpretability of the model

From : Prosperi, M., Min, J. S., Bian, J., & Modave, F. (2018). Big data hurdles in precision medicine and precision public health. BMC Medical Informatics and Decision Making, 18(1), 139. https://doi.org/10.1186/s12911-018-0719-2



- Diagnosis and treatment applications
  - Good performance (compare to individual expert) but in well-defined and limited areas
  - Need for better integration with clinician workflows and HIS
- Patient engagement and adherence applications
  - Wearable devices
  - Take into account the patient's patterns and self-data
  - To influence the patient's behaviour (nudge)
- Administrative applications, management and planning
  - Claim processing, clinical documentation, medical record management
  - EMR design/usability improvement, chatbots
  - Identifying and eliminating fraud or waste, scheduling patients



- Expanding access to care in underserved or developing regions
  - AI to mitigate the deficit of qualified staff
  - AI to help during care overload
- Diseases prevention
  - Primary and secondary prevention
  - EHR as a risk predictor (but data quality and formats issues)
  - Wearable and personal devices







• Disease outbreaks and support surveillance





FEVER PEAKS

For further examples see <a href="https://www.who.int/publications/i/item/9789240029200">https://www.who.int/publications/i/item/9789240029200</a>



• Disease outbreaks and support surveillance: covid-19 crisis



| Functions                                                                                                                                                      | Digital technology                                                                                                                                                                                                                                                                                                                                                                                              | Countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tracks disease activity in real time                                                                                                                           | Data dashboards; migration<br>maps; <u>machine learning</u> ; real-<br>time data from smartphones<br>and wearable technology                                                                                                                                                                                                                                                                                    | China; Singapore;<br>Sweden; Taiwan; USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Allows visual depiction of spread;<br>directs border restrictions; guides<br>resource allocation; informs<br>forecasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Could breach privacy; involves high costs;<br>requires management and regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Screens individuals and populations for disease                                                                                                                | Artificial intelligence; digital<br>thermometers; mobile phone<br>applications; thermal cameras;<br>web-based toolkits                                                                                                                                                                                                                                                                                          | China; Iceland;<br>Singapore; Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Provides information on disease<br>prevalence and pathology;<br>identifies individuals for testing,<br>contact tracing, and isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Could breach privacy; fails to detect<br>asymptomatic individuals if based on<br>self-reported symptoms or monitoring<br>of vital signs; involves high costs;<br>requires management and regulation;<br>requires validation of screening tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Identifies and tracks individuals<br>who might have come into<br>contact with an infected person                                                               | Global positioning systems;<br>mobile phone applications; real-<br>time monitoring of mobile<br>devices; wearable technology                                                                                                                                                                                                                                                                                    | Germany; Singapore;<br>South Korea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Identifies exposed individuals for<br>testing and quarantine; tracks<br>viral spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Could breach privacy; might detect<br>individuals who have not been exposed<br>but have had contact; could fail to detect<br>individuals who are exposed if the<br>application is deactivated, the mobile<br>device is absent, or Wi-Fi or cell<br>connectivity is inadequate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ldentifies and tracks infected<br>individuals, and implements<br>quarantine                                                                                    | Artificial intelligence; cameras<br>and digital recorders; global<br>positioning systems; mobile<br>phone applications; quick<br>response codes                                                                                                                                                                                                                                                                 | Australia; China; Iceland;<br>South Korea; Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Isolates infections; restricts travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Violates civil liberties; could restrict<br>access to food and essential services; fails<br>to detect individuals who leave<br>quarantine without devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Diagnoses infected individuals;<br>monitors clinical status; predicts<br>clinical outcomes; provides<br>capacity for telemedicine<br>services and virtual care | Artificial intelligence for<br>diagnostics; machine learning;<br>virtual care or telemedicine<br>platforms                                                                                                                                                                                                                                                                                                      | Australia; Canada; China;<br>Ireland; USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Assists with clinical decision-<br>making, diagnostics, and risk<br>prediction; enables efficient<br>service delivery; facilitates<br>patient-centred, remote care;<br>facilitates infection control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Could breach privacy; fails to accurately<br>diagnose patients; involves high costs;<br>equipment may malfunction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                | Tracks disease activity in real time         Screens individuals and populations for disease         Jedentifies and tracks individuals who might have come into contact with an infected person         Identifies and tracks infected individuals, and implements quarantine         Diagnoses infected individuals; monitors clinical status; predicts clinical outcomes; provides capacity for telemedicine | Tracks disease activity in real<br>timeData dashboards; migration<br>maps; machine learning; real-<br>time data from smartphones<br>and wearable technologyScreens individuals and<br>populations for diseaseArtificial intelligence; digital<br>thermometers; mobile phone<br>applications; thermal cameras;<br>web-based toolkitsIdentifies and tracks individuals<br>who might have come into<br>contact with an infected personGlobal positioning systems;<br>mobile phone applications; real-<br>time monitoring of mobile<br>devices; wearable technologyIdentifies and tracks infected<br>individuals, and implements<br>quarantineArtificial intelligence; cameras<br>and digital recorders; global<br>positioning systems; mobile<br>phone applications; quick<br>response codesDiagnoses infected individuals;<br>contors clinical status; predicts<br>capacity for telemedicineArtificial intelligence for<br>diagnostics; machine learning;<br>virtual care or telemedicine<br>platforms | Tracks disease activity in real<br>timeData dashboards; migration<br>maps; machine learning; real-<br>time data from smartphones<br>and wearable technologyChina; Singapore;<br>Sweden; Taiwan; USAScreens individuals and<br>populations for diseaseArtificial intelligence; digital<br>thermometers; mobile phone<br>applications; thermal cameras;<br>web-based toolkitsChina; Iceland;<br>Singapore; TaiwanIdentifies and tracks individuals<br>who might have come into<br>contact with an infected personGlobal positioning systems;<br>mobile phone applications; real-<br>time monitoring of mobile<br>devices; wearable technologyGermany; Singapore;<br>South KoreaIdentifies and tracks infected<br>individuals, and implements<br>quarantineArtificial intelligence; cameras<br>and digital recorders; global<br>positioning systems; mobile<br>phone applications; quick<br>response codesAustralia; China; Iceland;<br>South Korea; TaiwanDiagnoses infected individuals;<br>capacity for telemedicine<br>platformsArtificial intelligence for<br>diagnostics; machine learning;<br>virtual care or telemedicine<br>platformsAustralia; Canada; China;<br>Ireland; USA | Tracks disease activity in real<br>timeData dashboards; migration<br>maps; machine learning; real-<br>time data from smartphones<br>and wearable technologyChina; Singapore;<br>Sweden; Taiwan; USAAllows visual depiction of spread;<br>directs border restrictions; guides<br>resource allocation; informs<br>forecastsScreens individuals and<br>populations for diseaseArtificial intelligence; digital<br>thermometers; mobile phone<br>applications; thermal cameras;<br>web-based toolkitsChina; Iceland;<br>Singapore; TaiwanProvides information on disease<br>prevalence and pathology;<br>identifies individuals for<br>testing, contact tracing, and isolationIdentifies and tracks individuals<br>who might have come into<br>contact with an infected personGlobal positioning systems;<br> |

From Whitelaw, Sera, et al. « Applications of Digital Technology in COVID-19 Pandemic Planning and Response ». *The Lancet Digital Health*. https://doi.org/10.1016/S2589-7500(20)30142-4.



### Reducing costs (but lack of economic impact assessment studies)





all authors contributed equally



Wolff et al

| Use Case or<br>User Group | Category                                        | Examples of Applications                                                                                        | Technology                                                                                 | Use Case or<br>User Group         | Category                                                  | Examples of Applications                                                                     | Technology                                                           |
|---------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                           | Health monitoring<br>Benefit/risk<br>assessment | <ul> <li>Devices and wearables</li> <li>Smartphone and tablet<br/>apps, websites</li> </ul>                     | Machine learning,<br>natural language<br>processing (NLP), speech<br>recognition, chatbots | Public health<br>program managers | Identification of<br>individuals at risk                  | <ul> <li>Suicide risk identification<br/>using social media</li> </ul>                       | Deep learning<br>(convolutional and<br>recurrent neural<br>networks) |
|                           | Disease prevention                              | <ul> <li>Obesity reduction</li> <li>Diabetes prevention and management</li> <li>Emotional and mental</li> </ul> | Conversational AI, NLP,<br>speech recognition,<br>chatbots                                 |                                   | Population health                                         | Eldercare monitoring                                                                         | Ambient AI sensors                                                   |
| Patients and families     | and management                                  |                                                                                                                 |                                                                                            |                                   | Population health                                         | <ul><li>Air pollution<br/>epidemiology</li><li>Water microbe detection</li></ul>             | Deep learning, geospatial<br>pattern mining, machine<br>learning     |
|                           | Medication<br>management                        | <ul><li>health support</li><li>Medication adherence</li></ul>                                                   | Robotic home telehealth                                                                    | Business<br>administrators        | International<br>Classification of<br>Diseases, 10th Rev. | <ul> <li>Automatic coding of<br/>medical records for<br/>reimbursement</li> </ul>            | Machine learning, NLP                                                |
|                           | Rehabilitation                                  | <ul> <li>Stroke rehabilitation<br/>using apps and robots</li> </ul>                                             | Robotics                                                                                   |                                   | (ICD-10) coding                                           |                                                                                              |                                                                      |
| Clinician care<br>teams   | Early detection,<br>prediction, and             | <ul> <li>Imaging for cardiac<br/>arrhythmia detection,</li> </ul>                                               | Machine Learning                                                                           | Business<br>administrators        | Fraud detection                                           | <ul> <li>Health care billing fraud</li> <li>Detection of unlicensed<br/>providers</li> </ul> | Supervised,<br>unsupervised, and hybrid<br>machine learning          |
|                           | diagnostics tools                               | <ul> <li>retinopathy</li> <li>Early cancer detection</li> </ul>                                                 |                                                                                            |                                   | Cybersecurity                                             | Protection of personal<br>health information                                                 | Machine learning, NLP                                                |
|                           | Surgical proce-<br>dures                        | (e.g., melanoma)<br>• Remote-controlled                                                                         | Robotics, machine                                                                          |                                   | Physician<br>management                                   | Assessment of physician<br>competence                                                        | Machine learning, NLP                                                |
|                           |                                                 | <ul> <li>robotic surgery</li> <li>AI-supported surgical roadmaps</li> </ul>                                     | learning                                                                                   | Researchers                       | Genomics                                                  | Analysis of tumor<br>genomics                                                                | Integrated cognitive<br>computing                                    |
|                           | Precision medicine                              | Personalized     chemotherapy treatment                                                                         | Supervised machine<br>learning, reinforcement                                              |                                   | Disease prediction                                        | Prediction of ovarian     cancer                                                             | Neural networks                                                      |
|                           |                                                 | enemotierupy a cathlent                                                                                         | learning                                                                                   |                                   | Discovery                                                 | <ul> <li>Drug discovery and</li> </ul>                                                       | Machine learning,                                                    |
|                           | Patient safety                                  | Early detection of sepsis                                                                                       | Machine learning                                                                           |                                   |                                                           | design                                                                                       | computer-assisted<br>synthesis                                       |



From "Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril". National Academy of Medicine. https://nam.edu/artificial-intelligence-special-publication/

# Challenges

| Challenge                                          | Description                                                                                                                                                                                                                                        |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Workflow integration                               | Understand the technical, cognitive, social, and political factors in play and incentives impacting integration of AI into health care workflows.                                                                                                  |
| Enhanced<br>explainability and<br>interpretability | To promote integration of AI into health care workflows, consider what<br>needs to be explained and approaches for ensuring understanding by all<br>members of the health care team.                                                               |
| Workforce education                                | Promote educational programs to inform clinicians about AI/machine learning approaches and to develop an adequate workforce.                                                                                                                       |
| Oversight and regulation                           | Consider the appropriate regulatory mechanism for AI/machine learning and approaches for evaluating algorithms and their impact.                                                                                                                   |
| Problem<br>identification and<br>prioritization    | Catalog the different areas of health care and public health where AI/<br>machine learning could make a difference, focusing on intervention-driven<br>AI.                                                                                         |
| Clinician and patient<br>engagement                | Understand the appropriate approaches for involving consumers and clinicians in AI/machine learning prioritization, development, and integration, and the potential impact of AI/machine learning algorithms on the patient-provider relationship. |
| Data quality and access                            | Promoting data quality, access, and sharing, as well as the use of both<br>structured and unstructured data and the integration of non-clinical data is<br>critical to developing effective AI tools.                                              |





# Challenges

• Implement Learning Health Systems (LHS)

"health system in which internal data and experience are systematically integrated with external evidence, and that knowledge is put into practice" (AHRQ definition)



Systematically gather and create evidence.

Apply the most promising evidence to improve care.



# Challenges

• Implement Learning Health Systems (LHS)

"health system in which internal data and experience are systematically integrated with external evidence, and that knowledge is put into practice" (AHRQ definition)




#### Challenges : LHS and AI in health

| Торіс                     | IOM Learning Health System<br>Recommendation                                                                                                                                 | Mapping to AI in Health Care                                                                                                                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foundational Elements     | •                                                                                                                                                                            |                                                                                                                                                                                                                                                         |
| Digital infrastructure    | Improve the capacity to capture<br>clinical, care delivery process,<br>and financial data for better<br>care, system improvement,<br>and the generation of new<br>knowledge. | Improve the capacity for<br>unbiased, representative data<br>capture with broad coverage for<br>data elements needed to train<br>AI.                                                                                                                    |
| Data utility              | Streamline and revise research<br>regulations to improve care,<br>promote and capture clinical<br>data, and generate knowledge.                                              | Leverage continuous quality<br>improvement (QI) and<br>implement scientific methods<br>to help select when AI tools are<br>the most appropriate choice<br>to optimize clinical operations<br>and harness AI tools to support<br>continuous improvement. |
| Care Improvement Targets  |                                                                                                                                                                              |                                                                                                                                                                                                                                                         |
| Clinical decision support | Accelerate integration of the<br>best clinical knowledge into<br>care decisions.                                                                                             | Accelerate integration of AI<br>tools into clinical decision<br>support applications.                                                                                                                                                                   |
| Patient-centered care     | Involve patients and families in<br>decisions regarding health and<br>health care, tailored to fit their<br>preferences.                                                     | Involve patient and families in<br>how, when, and where AI tools<br>are used to support care in<br>alignment with preferences.                                                                                                                          |
| Community links           | Promote community-clinical<br>partnerships and services aimed<br>at managing and improving<br>health at the community level.                                                 | Promote use of AI tools in<br>community and patient health<br>consumer applications in a<br>responsible, safe manner.                                                                                                                                   |
| Care continuity           | Improve coordination and com-<br>munication within and across<br>organizations.                                                                                              | Improve AI data inputs and<br>outputs through improved<br>card coordination and data<br>interchange.                                                                                                                                                    |
| Optimized operations      | Continuously improve health<br>care operations to reduce waste,<br>streamline care delivery, and<br>focus on activities that improve<br>patient health.                      | Leverage continuous QI and<br>Implementation Science<br>methods to help select when AI<br>tools are the most appropriate<br>choice to optimize clinical<br>operations.                                                                                  |

| Торіс                    | IOM Learning Health System<br>Recommendation                                                                            | Mapping to AI in Health Care                                                                                                                                            |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Policy Environment       |                                                                                                                         |                                                                                                                                                                         |  |
| Financial incentives     | Structure payment to reward<br>continuous learning and im-<br>provement in the provision of<br>best care at lower cost. | Use AI tools in business practic-<br>es to optimize reimbursement,<br>reduce cost, and (it is hoped) do<br>so at a neutral or positive bal-<br>ance on quality of care. |  |
| Performance transparency | Increase transparency on health<br>care system performance.                                                             | Make robust performance char-<br>acteristics for AI tools trans-<br>parent and assess them in the<br>populations within which they<br>are deployed.                     |  |
| Broad leadership         | Expand commitment to the goals of a continuously learning health care system.                                           | Promote broad stakeholder<br>engagement and ownership in<br>governance of AI systems in<br>health care.                                                                 |  |

#### Data for AI

- Data are critical for developing AI algorithms
- Key technologies for data capture are now well established (smartphone, mobile apps and device, EMR, HIS,...)

→ Heterogeneous data-rich environment

- Data are mainly collected via information systems
  - → Knowledge of the underlying processes and IS specificities is mandatory
- Data are collected with an initial/primary objective

→ Reusing data (for AI analyzes) must takes into account this objective



## What are data, information, knowledge...and wisdom ?





#### Data are selective observations





Context

#### Isolated data are meaningless





#### Data are linked to concepts





Context

## Data + knowledge => relevant action

• Knowledge : relationships/laws/general rules applicable to a data set



« do not drive! »

## Data > Information > Knowledge > Wisdom

- Data are undigested observations, unvarnished facts.
- *Information* is organized data—organized by others, not by me.
- *Knowledge* is organized information, internalized by me, integrated with everything else I know from experience or study or intuition, and therefore useful in guiding my life and work.
- *Wisdom* is integrated knowledge, information made super useful by theory, which relates bits and fields of knowledge to each other, which in turn enables me to use the information to do something.

Cleveland H. cited by Baker, E. L., Fond, M., Hale, P., & Cook, J. (2016). What is "informatics"? Journal of Public Health Management and Practice, 22(4), 420-423. https://doi.org/10.1097/PHH.0000000000000415



#### Health Information Systems play a role in all these elements



# Structure of computerized data

- « Simple » structure (attribute: value) Examples:
  - Blood alcohol: 3,2 g/L
  - Asthenia: True
  - Eye colour: Blue
- « composite » structure

Example:

Blood pressure

Systolic blood pressure: 12 mmHg

Diastolic blood pressure: 8 mmHg





#### Structure <-> Model

#### Model

Representation and organization of elements considered as essential for an observed reality, in a given context and for a given purpose(s)





## Structure <-> Syntax

#### Syntax

Rules on how to write and dispose information/data



```
Example of a JSON syntax
```

```
"resourceType": "Observation",
                                                        "display": "normal"
"id": "blood-pressure",
                                                            "code": {
"bodySite": {
                                                             "coding": [
 "coding": [
                                                               "system": "http://loinc.org",
   "system": "http://snomed.info/sct",
                                                               "code": "8462-4",
   "code": "368209003",
                                                               "display": "Diastolic blood pressure"
   "display": "Right arm"
                                                           "valueQuantity": {
"component": [
                                                             "value": 60,
                                                             "unit": "mmHg",
  "code": {
                                                             "system": "http://unitsofmeasure.org",
   "coding": [
                                                             "code": "mm[Hg]"
     "system": "http://loinc.org",
                                                            "interpretation": [
     "code": "8480-6",
     "display": "Systolic blood pressure"
                                                              "coding": [
  "valueQuantity": {
                                                                "system": "http://terminology.hl7",
   "value": 107,
                                                                "code": "L",
   "unit": "mmHg",
                                                                "display": "low"
   "system": "http://unitsofmeasure.org",
   "code": "mm[Hg]"
```

#### Data are the result of choices





















Crédits infographie : étude sur l'usage des données de santé (2018) lir.asso.fr

## Notion of interoperability

Interoperability of information systems (IS): several levels

- Syntactic  $\rightarrow$  Technical
- Semantics → Models and concepts (nomenclature/classification/code systems)
- Organisational  $\rightarrow$  Processes alignment





#### Interoperability levels

Cooperating partners with compatible visions, **Political Context** aligned priorities, and focused objectives Legal Interoperability Aligned legislation so that exchanged data is accorded proper legal weight **Organisational Interoperability** Coordinated processes in which different organisations achieve a previously Organisation and Process agreed and mutually beneficial goal Alignment Semantic Interoperability Precise meaning of exchanged information which is preserved and understood Semantic Alignment by all parties **Technical Interoperability** Planning of technical issues involved in linking computer systems and services Interaction & Transport

See: <u>http://references.modernisation.gouv.fr/interoperabilite</u> anf <u>https://ec.europa.eu/isa2/eif</u> Video: <u>https://www.youtube.com/watch?v=g-CzHHJ0ZTM&</u>



Developments regarding data and their (re)use

Natively digital data are resources (Big data, AI)

Data-driven research as a complement to traditional hypothesis-driven research



# Hypothesis generation

#### **Features selection methods**

- Wrapper methods
  - Fitting machine-learning models on different subsets of variables
  - Selection of the subset of variables the most predictive
- Filter methods
  - Studying correlation, p-value, other statistical tests
  - Lower computational costs
- Embedded methods
  - Embed the variable selection step into the learning algorithm
  - Examples: Least Absolute Shrinkage and Selection Operator (LASSO), elastic nets, regularized trees



- Heterogeneity of Representations
  - Raw data representations
  - Query languages
  - Communication protocol
  - Vocabulary mismatching
- Knowledge boundaries
  - Explicit knowledge (communicable)
  - Implicit knowledge (not communicable ?)





- Discovering data
  - Who has the data needed and where
  - Trust relationships with owner

#### Inter-instutional research plateform – scientific collaboration





From Gagalova K et al. What You Need to Know Before Implementing a Clinical Research Data Warehouse: Comparative Review of Integrated Data Repositories in Health Care Institutions JMIR Form Res 2020;4(8):e17687



• Discovering data  $\rightarrow$  data publication



#### https://www.fair4health.eu



#### Data quality

From Kahn MG, et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. EGEMS (Wash DC). 2016 Sep 11;4(1):1244.

- 1. Conformance (is the format of the data consistent with what is expected ?)
  - Format of the value itself
  - Conformity of the code or label identifying the data
- 2. Completeness (is the value of the data present ?)
  - Accidental missingness (MCAR Missing Completely at Random)
  - Context-dependent missingness (MAR Missing At Random, MNAR Missing Not At Random)
- 3. Plausibility
  - Timeliness
  - Temporal



Data bias in AI

- Inappropriate training dataset (under/over-representation)
- Lack of knowledge about data





# Pathway from raw data to AI algorithm

Heterogeneous data integration is the next challenge for AI

...and an old challenge for HIS !



