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Outline

» Functional Data Analysis (FDA)
» Functional Principal Components Analysis (FPCA)
» mixed models for ozone trends
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Functional Data Analysis (FDA)

Branch of statistics dealing with analysis of data in functional
forms such as curves or images.

Functional data are intrinsically infinite dimensional and exhibit
high level of correlation (Ramsay and Silverman, 2005).
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FDA

» Two school of thoughts
1. smoothing school

» Consider each sample as a smooth function.

» Conversion of discrete data into smooth functions using
various approaches, e.g. B-spline basis expansion, bivariate
splines (Guillas and Lai, 2010).

2. stochastic school
» View each sample as a set of stochastic process:

X ={X;,tel0,T]}.
» Design of functional data

1. dense and regular grid
2. sparse and irregular grid (longitudinal studies)
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Notations

» Function space:

XGEWJT:{KATMMFW<W}

> Inner product:

;
f,g € L?[0,T], <f,g>= / f(t)g(t)dt
0

» Norm:

IF]]? =< f,f >

5/26



Notations: generalization of covariance matrix

» For X € £2[0, T] with Ex(t) = 0 and t € [0, T], denote the
covariance function by Cx:

CX(sa t) = E[X(S)X(t)]v

and compute its estimate as

n

Cx(s,t)::;;Egjxxs)xxt)
i=1

» When foT fOT C%(s, t)dsdt < oo, write a covariance operator
Fx of X € £2, which maps f(t) to f(s) as

(Txf)(s) = /OT Cx(s, t)f(t)dt.
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Representation of functional data

> Let x;(t) be the ith underlying true function, observed at
finite and dense grid points, {t;,j = 1,.., N}. In practice, the
observations y;; include measurement errors:

vip = xi(tj) + €5, ¥t €0, T].

» Expand x;(t) in B-spline basis ¢(t):

K
xi(t) = > cudi(t),
k=1

where cjx are the associated B-splines coefficients.

» Splines are piecewise polynomials with the polynomial pieces
joining at knots. To define spline basis system, we have to
decide

1. degree of polynomials
2. location and the number of knots, or functions via K. K can

control the level of smoothing.
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Representation of functional data

height (cm)
120 140 160 180

100

80

8/26



Estimation of cjx based on least squares fitting criterion

> In regression splines, selection of K plays a crucial role:

N K
”li“ Z[Yij - Z cik k()]
=1 k=1

but is computationally expensive.

» In penalized splines, K is chosen to be large enough to
capture the maximum complexity, but the use of penalization
controls the excessive variations:

min (llys — ®c? + Ac] PTPe;)
Cj

where Y, = [y,-l, ..,y,-N]T, ¢jk = ¢k(tj) and C; = [C,'l, ey C,'K]T.
P TP is penalty matrix, measuring the roughness of x;(t).
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Principal Component Analysis (PCA): multivariate

Transforms X1, ..., X, into linearly uncorrelated random variables:
to select the first few modes of variability and maximize variance
explained.

First PC, zy, is solution of

max zIszl,
llzll=1

where X x is the sample covariance matrix.

Subsequent PCs, z5, ...,z obtained by solving maximization
above under orthogonality constraint: zZ—z/ =0,Vk #1I

It is related to eigenvalue decomposition as

X xzj = pjz;,

where p; are eigenvalues and z; are eigenvectors.
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Functional Principal Component Analysis (FPCA)

Similar idea as for multivariate random vectors:
» Expansion of X € £2[0, T], in terms of eigen-functions of Ix.
» Tool for dimension reduction, an essential step for FDA.

» Functional Principal Components (FPCs) are often interpreted
as major modes of variation.
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Ozone Trend Analysis

Objectives
» Reveal non-linear effects of time covariates and atmospheric
forcings on ozone variations using penalized splines, where
each effect is fitted as an additive smooth function.
» Remove the effects of atmospheric influences on ozone and
obtain trend estimates more genuinely corresponding to the
variations due to the changing emissions of ODSs and GHGs.

» Employ FDA approach to identify more precisely the
covariates’ effects that vary along different altitudes.

> Allow heteroscedasticity to account for the observed
periodidicity in regression errors.
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Description of ozone data

(Meiring, 2007)
» Umkehr daily ozone observations as functions of altitude
(0-45km, layer 29-60) from 1978-2011 are investigated at
Boulder (USA) and Arosa (Switzerland).

» Ozone observations are unequally spaced in time, so the daily
records are averaged and monthly means are used.

» Remove observations of two volcanic periods, 1982-1983 (El
Chinchén) and 1991-1993 (Pinatubo).
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Ozone as functional data

Denote y;; the altitude-dependent monthly mean ozone at time /
and layer j. Then, true but unknown ozone profile, x;(a;), is
i = xi(aj) + ej,  aj € [0,45km], ej ~ N(0,07),

where e;j; are i.i.d. observational errors.
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Figure: Boulder: Estimated x;(a) using smoothing splines.
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Covariate data
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Atmospheric forcing as covariate data
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Two alternative statistical models for trend analysis

» Conventional multivariate approach: fit regression separately
for each altitude a; with autoregressive noise ¢; (Miller et al.,
2006)

9

yij = g1j(m;i) + g2j(yri) + Zgrf(z”) + 0j.
r=3

Here, borrowing of information across altitudes is not possible.

» Full functional approach: fit functional regression in one
setting as

9

xi(a) = g1(mi, a) + ga(yri,a) + Y _ &r(zi, a) + di(a).
r=3

Here, the covariate effects smoothly vary along altitudes.
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Our 2-step functional approach via dimension reduction

1. dimension reduction (truncated FPCA):

d
xi(a) =Y &iGi(a), & = /C,(a)x,-(a)da,
=1
where (;(a) is the /th functional PC and &j; is its score. d = 5.

2. estimation of covariate effects: Additive Mixed Model

9

&1 = gu(mi) + galyri) + > _ &n(zir) + i, i ~ N(0, %),
r=3

log(c3) = 61/ sin(2m ;) + 0y cos(2m i), i; = m;/12.
g are fitted using penalized splines in mixed effects model

framework (Wood, 2006).
Observed annual pattern in errors modeled.
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Estimation results: dimension reduction
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Figure: Smoothed functional PCs (first) and PC scores.
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Estimation results: covariate

effects
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Figure: Boulder: Fitted smooth curves (solid line) and 95% Bayesian
credible intervals (shaded areas) for selected scores and covariates.

20/26



Trend analysis

Recall the FPCA decomposition.
Using the estimated scores after other effects of covariates are
removed, compute the trend at altitude a as

d

0i(a) = 3 Gi(a)ai(yn), (1)

=1

where O;(a) is the estimated ozone trend at altitude a for year i
and &y(yri) is Ith fitted PC score of year term.
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Trend analysis
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Trend analysis
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Estimated trends (without EP flux: red)
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Conclusions and future work

» Great variations in covariates's effects across altitudes are
found: benefits of functional approach
» QOur model can capture fine variations in the profiles such as
semi-annual-oscillation.
» Using heteroscedastic error structure:
» more accurate estimates of influences and trends
» enhanced uncertainty quantification of the estimates (width of
confidence intervals)
» To improve the fit we can include short-term-dynamical
transport terms.
» Add more stations and incorporate latitudes to borrow
strength across stations.
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Figure: Uncertainties in estimates of global total column ozone (Chang,
Guillas, Fioletov, AMT 2015)
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