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Many types of biomarker-based trials 
already in 2011-13
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to be confirmed in prospective studies, as described later in this 
article. The retrospective phase of the validation process can be 
illustrated by the MammaPrint™ microarray-based signature 
developed by The Netherlands Cancer Institute (Amsterdam, 
The Netherlands) in a small sample of 78 untreated patients with 
the goal of predicting the occurrence of distant metastases in 
women with early breast cancer [13]. A retrospective ana lysis iden-
tified a 70-gene signature as a strong prognostic marker for the 
occurrence of metastases within 5 years of resection. In a larger 
sample of patients treated at the same institution, patients with a 
poor-prognosis MammaPrint signature were confirmed to have a 
much higher risk of distant metastases within 5 years compared 
with patients with a good-prognosis signature [14]. An indepen-
dent validation study of the signature was then conducted involv-
ing independent samples contributed by several European centers, 
with results confirming that the gene signature adds prognostic 
information over and above that provided by a binary risk classi-
fier based on the other known clinical and patho logical factors [15]. 
Although these results were impressive, the clinical usefulness of 
the signature was still in question, especially because the predic-
tive accuracy of the signature was attenuated with longer follow-
up (i.e., including patients who developed distant metastases after 
5 years of follow-up) [16,17]. The negative-predictive value of the 
signature for distant-metastasis-free survival status at 5 years after 
diagnosis was relatively high (0.9 in the Amsterdam series; 0.84 in 
the validation series), but the positive-predictive value of the sig-
nature was rather modest (0.63 in the Amsterdam series; 0.30 in 
the validation series). Hence, the signature could not be claimed, 
in and of itself, to be a sufficiently accurate predictor of which 

patients would develop metastases and could not provide the sole 
basis for a treatment decision. Overall, the clinical utility of this 
signature, that is, its ability to influence a therapeutic decision, 
remains to be confirmed in prospective trials [17,18]. In the USA, 
the development of the commonly used signature, Oncotype 
DX®, followed similar steps [19]. 

Retrospective identification of predictive biomarkers
For a biomarker to be predictive, the baseline value, or changes 
in the values of the biomarker over time, must be shown to 
predict the efficacy or toxicity of a treatment, as assessed by a 
defined clinical end point. For a putative predictive biomarker 
to be validated, its ability to predict the effects of treatment 
(or lack thereof ) should be demonstrated repeatedly in mul-
tiple studies. The statistical identification of predictive mark-
ers requires data from randomized trials that include patients 
with both high and low levels of the biomarker. Retrospective 
analyses may be sufficient to identify candidate predictive bio-
markers and validate them to a degree that enables them to be 
incorporated into trial design and clinical practice, although 
definitive evidence may still require prospective clinical trials. 
The retrospective identification and provisional validation process 
can again be illustrated by Oncotype DX in early breast cancer. 
Using data from the Southwest Oncology Group (SWOG)-8814 
trial (NCT00929591) [101], a higher recurrence score was dem-
onstrated to predict a larger benefit of chemotherapy given in 
combination with tamoxifen in postmenopausal women with 
node-positive, estrogen-receptor-positive tumors [20]. Another 
notable example of retrospective identification of a predictive 

Table 2. Trial designs using biomarkers.

Trial 
phase 

Treatment Biomarker 
type

Validated 
biomarker 

Trial design Examples

Standard Prognostic No Retrospective series MammaPrint™ in early breast cancer
Oncotype DX® in early breast cancer

Standard Predictive No Retrospective 
analyses of 
randomized trials

Oncotype DX in early breast cancer (SWOG-8814)
KRAS mutations in advanced colorectal cancer (CRYSTAL)
EGFR mutations in non-small-cell lung cancer (IPASS)

III Standard Prognostic No Clinical utility MINDACT in early breast cancer
TAILORx in early breast cancer

III Standard Predictive No Randomize-all
Interaction 
Biomarker strategy

MARVEL in non-small-cell lung cancer
P53 in advanced breast cancer
ERCC1 in non-small-cell lung cancer

II Experimental Predictive Yes Targeted
Bayesian

Herceptin in advanced breast cancer
BATTLE in non-small-cell lung cancer
I-SPY 2 in advanced breast cancer

III Experimental Predictive Yes Targeted PETACC-8 in advanced colorectal cancer
TOGA in advanced gastric cancer

II Experimental Predictive No Adaptive parallel
Tandem two-step
TTP ratio

Dovitinib in HER2-negative advanced breast cancer 
Saracatinib in pancreatic cancer
Molecular profiling in various tumor types

III Experimental Predictive No Enrichment 
Prospective subset

IPASS in non-small-cell lung cancer
SATURN in non-small-cell lung cancer

TTP: Time to progression.

Integrating biomarkers in clinical trials

Buyse, Michiels et al, Expert Rev Mol Diag 2011; Buyse, Michiels Curr Op Oncol 2013



Example of survival curves in 
experimental (Exp) versus 
control (Ctrl) arms for 
patients with a high gene
signature score (High score) 
versus patients with a low
gene signature score (Low
score) in the case of a 
prognostic gene signature 
(top left) or a predictive
gene signature, with either
quantitative (bottom left) or 
qualitative (bottom right) 
interaction. 

Prognostic vs predictive

Michiels Ann Onc 2016
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Organisation des plateformes de génétique
moléculaire du cancer

Frédérique Nowak – 11 octobre 2017

Journées du GFCO

Predictive biomarkers for targeted 
therapies’ prescription

Biomarker Cancer type Targeted therapies Patients nb 
in 2016

KIT mutations GIST Imatinib 1 218

HER2 amplification Breast and gastric cancers
Trastuzumab, lapatinib, pertuzumab, 
trastuzumab emtansine

10 832 (B)
770 (G)

RAS mutations Colorectal cancer Panitumumab, cetuximab 21 923

EGFR mutations Lung cancer Gefitinib, erlotinib, afatinib, osimertinib 28 563

ALK translocations Lung cancer Crizotinib, ceritinib, alectinib 23 434

ROS1 translocations Lung cancer Crizotinib 17 680

BRAFV600 mutation Melanoma
Vemurafenib, dabrafenib, trametinib, 
cobimetinib

5 583

BCR-ABL translocation Chronic Myeloid Leukaemia/ 
Acute Lymphoblastic Leukaemia

Imatinib, nilotinib, dasatinib, ponatinib, bosutinib 9 570

17p deletion / TP53
mutation Chronic Lymphocytic Leukaemia Ibrutinib, idelalisib

2 857
1 808

BRCA mutation 
(somatic) Ovarian cancer Olaparib 1 608

F. Nowak, French National Cancer Institute



West Jama Oncol 2017

• For definitions, see also The European Society for Medical Oncology 
(ESMO) Precision Medicine Glossary. Ann Onc 2017

•
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MOLECULAR GENETICS CENTRES: 
ACTIVITY INDICATORS
Predictive molecular testing in France in 2015: Activity of the 28 molecular genetics centres
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Basket trial in France: Acsé

• Crizotinib is registered for the treatment of patients 
with ALK+ or ROS1+ lung cancer. 

• Crizotinib targets are also altered in a wide range 
of malignancies in adults and children.

• To generate high evidence-based knowledge and 
to prevent off-label use, the French National 
Cancer Institute  launched the AcSé Program in 
2013 in an exploratory multi-basket phase II trial

• About 150 participating centers
• Frequentist / bayesian design

Clinical trial information: NCT02034981



PFS1

Last 

progression, 

entry on trial

Progression 

on targeted 

agent

PFS2

Last line of therapy Matched targeted agent

Von Hoff, JCO 2010; Mick, Contr ClinTrials 2000

Trial of molecular screening

Molecular profiling
> 2 prior lines of therapy 

for advanced disease

• The natural history of most advanced tumors suggests that 

PFS2/PFS1 < 1

• Null hypothesis:  <15% of the pts have PFS2/PFS1 > 1.3

PFS:

Progression-

free survival



• Only 66 patients of 106 could have 
molecular profiling
• Non-randomized trial, hence no evidence 

that physician�s choice would have 
yielded inferior results
• Is TTPR > 1.3 a relevant endpoint?
• Cross-over design inefficient if low 

correlation between TTP1 and TTP2

ISSUES WITH TRIAL OF MOLECULAR 
PROFILING

Ref: Von Hoff, JCO 2010

MOLECULAR SCREENING 

CGH Array & NGS & WES & RNAseq 

CLINICAL 

DECISION 

Max 21 calendar days 

FRESH TUMOR 
 

BIOPSY          PATHOLOGICAL  

                       CONTROL 

TREATMENT 

• Monocentric 
 

• Target accrual > 1000 patients  

Antoine Hollebecque et al., ASCO 2013; Charles Ferte et al, AACR 2014 

MOSCATO 01 trial:  

High through-put analysis in a high volume phase I center 



Massard et al, Cancer Discovery 2016
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All patients recovered after medical treatment without any 
deaths related to biopsy procedure.

The techniques used to obtain molecular portraits for 
843 patients at the start of the MOSCATO trial included 
targeted sequencing (feasible for 837 patients) and array com-
parative genomic hybridization (aCGH) analysis (feasible for 
745 patients). During the course of the trial, RNA sequenc-
ing (RNA-seq; 427 patients) and whole-exome sequencing 
were added (166 patients). Genomic reports were validated 
by a molecular geneticist and discussed during a weekly 
multidisciplinary molecular tumor board dedicated to the 
MOSCATO trial. Actionability of the target was defined by 
the molecular board. An actionable target was detected in 
411 patients (49% of the 843 patients with a molecular por-
trait). In some patients, actionable targets were identified by 
multiple tests. Actionable targets were identified by targeted 
sequencing in 255 patients, by aCGH in 252 patients, by IHC 
in 17 patients, and by FISH in 16 patients. The median time 
from signed consent to biopsy and from biopsy to molecular 
board (encompassing sequencing and aCGH analyses) was 19 
days [interquartile range (IQR), 6–33 days] and 21 days (IQR, 
14–27 days), respectively. We did not observe any meaningful 
difference in time from biopsy to molecular tumor board 

between the 64 patients with clinical deterioration (median 
of 21 days; IQR, 19–26) and the other patients (median, 21 
days; IQR, 14–26 days).

Patient Characteristics in the Treatment Phase
One hundred ninety-nine patients received a therapy 

matched to the genomic alteration in the subsequent line of 
therapy, based on CGH (105 patients), targeted sequencing 
(85 patients), and MET-positive IHC (9 patients). This repre-
sents 19% of the patients who consented (95% CI, 17%–22%) 
and 24% of the patients for whom a molecular portrait was 
successfully obtained. Reasons for not providing targeted 
therapies in the other 212 patients with a targetable alteration 
are outlined in Fig. 1. Patient characteristics of the matched 
treatment population are reported in Table 1. Patients received 
a median of 4 prior lines of treatment for advanced disease 
(1–14). The median Royal Marsden Hospital (RMH) score was 
1 (0–3). The vast majority of the patients received matched 
therapy in the context of phase I/II trials (n = 149, 75%). The 
matched therapies used in the trial are listed in Table 2. One 
hundred twenty-seven patients were treated with single-agent 
targeted therapy, and 72 patients received a combination 
(chemotherapy in 42 cases; targeted therapy in 30).

Figure 1.  Study flow.

No actionable target: n = 432

Molecular portrait (NGS or CGH)
n = 843

NGS + CGH: n = 739 / NGS alone: n = 98 / CGH alone: n = 6

Actionable target, n = 411

Received matched treatment
n = 199

Patients included
n = 1,110

Pediatric patients n = 75

No biopsiable lesion: n = 28
SAE: n = 25
Consent withdrawal: n = 11
Clinical deterioration or death: n = 5
Other: n = 11
Missing: n = 7

No NGS nor CGH: n = 105

Adults included
n = 1,035

Rapid clinical deterioration: n = 64
Other protocol: n = 45
Waiting for treatment: n = 37
Exclusion criteria: n = 21
Trial not open or missing slot: n = 17
Absence of progressive disease: n = 6
Patient or physician refusal: n = 11
Concomitant illness: n = 2
Unknown: n = 9

Evaluable for PFS2/PFS1
n = 193

PFS1 missing: n = 5
PFS2< 1.3*PFS1 and not yet progressed
n = 1

Successful tumor biopsy
n = 948

Screen failure n = 87

Research. 
on April 3, 2017. © 2017 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst April 1, 2017; DOI: 10.1158/2159-8290.CD-16-1396 

MOSCATO 01 trial



MOSCATO 01 trial
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parative genomic hybridization (aCGH) analysis (feasible for 
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sents 19% of the patients who consented (95% CI, 17%–22%) 
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are outlined in Fig. 1. Patient characteristics of the matched 
treatment population are reported in Table 1. Patients received 
a median of 4 prior lines of treatment for advanced disease 
(1–14). The median Royal Marsden Hospital (RMH) score was 
1 (0–3). The vast majority of the patients received matched 
therapy in the context of phase I/II trials (n = 149, 75%). The 
matched therapies used in the trial are listed in Table 2. One 
hundred twenty-seven patients were treated with single-agent 
targeted therapy, and 72 patients received a combination 
(chemotherapy in 42 cases; targeted therapy in 30).
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Agents in phase I/II trials or 
compassion use



Massard et al, Cancer Discovery 2016

MOSCATO 01 trial

33% of 193 evaluable 
pts presented a 
PFS2/PFS1 > 1.3 
(95% CI, 26%–39%)



Massard et al, Cancer Discovery 2016

MOSCATO 01 trial

Kaplan-Meier plot of 
PFS2/PFS1

33% of 193 evaluable 
pts presented a 
PFS2/PFS1 > 1.3 
(95% CI, 26%–39%)



• In MOSCATO 01, only 199 out of 1035 adult pts 
received a matched targeted treatment

• Is PFS2/PFS1 a relevant endpoint and what
does it mean a null hypothesis of <15% of the 
pts have PFS2/PFS1 > 1.3 ?

• If within-patient correlation of PFS2/1 is 
moderate in natural history, a higher proportion 
of pts with PFS2/PFS1 > 1.3 can be expected 
under the null (Paoletti, Michiels 2017)

• Non-randomized trial, so no evidence that 
standard treatment would have yielded inferior 
results … 

Issues in the MOSCATO 01 molecular 
screening trial



El Dakdouki et al AACR Annual Conference 2018; Cancer Res 2018;78(13
Suppl):Abstract nr 2953.

The inverse probability 

weighting (IPW) method with a 

propensity score was used to 

estimate a causal effect in a 

Cox model: 

HR=0.9 [0.7,1.1], p=0.4

Overall survival results in MOSCATO 01of 

any targeted treatment (TT) in patients 

with actionable targets 



The many advantages of randomization…

R

Std

Exp

R
Std

Exp

B-

Biomarker

B+

• Protects against selection bias and makes 
groups comparable for benefit/risk

• Allows to evaluate predictive or treatment-
modifying effect (vs prognostic)

R: randomization
B: marker



Statistical framework for discovering 
predictive biomarkers

Proportional hazard model
ℎ "; $%, '( = ℎ* " exp .$% + 0⊺'( + 2⊺$%'(

with
• ℎ* " the baseline hazard function at times " > 0
• $% the treatment arm
• '( the p-dimensional vector of biomarkers

and with 2⊺$%'( accounting for the
treatment-by-biomarkers interaction



Statistical issues

ℎ "; $%, '( = ℎ* " exp .$% + 0⊺'( + 2⊺$%'(

Aim: selection of the relevant interactions $%'(
Issue: The model with all the main effects 0⊺'( is not identifiable

or at least very DoF-consuming

→ How to select the relevant interactions
while properly accounting for the main effects?



(A)LASSO

Full LASSO.
!" #, %, & = ! #, %, &; ), * − , -⊺ % + -⊺ &

Adaptive LASSO.
!" #, %, & = ! #, %, &; ), * − , 0%

⊺ % + 0&⊺ &

• Pros. Simple. Sparse models, easy interpretation. 
Solid results in our simulation study

• Cons. No hierarchy constraint for interaction
Ternes Biom J. 2017



!"# = !%⊺'#()# = (*⊺'#

+

Estimation of expected survival after 
penalisation

ℎ -; /0, '# = ℎ2 - exp 6/0 + *⊺'# + %⊺/0'#
89 * = 8 *;' − ;< *

!"# = !%⊺'#
Ternes BMC Med Res Meth 2017



Accounting for prognostic biomarkers

ℎ "; $%, '( = ℎ* " exp .$% + 0⊺'( + 2⊺$%'(

Prognostic classes based on 3φ( = 50⊺'(
using percentiles 16.4%, 33.6%, 33.6%, 16.4% (Cox 1957)

36( < 0.164 0.164 ≤ 36( < 0.5 0.5 ≤ 36( < 0.836 0.836 ≤ 36(

Ternes BMC Med Res Meth 2017



Estimation of the survival probability

Confidence interval estimation:
- Analytic
- Smoothed by splines

either in the original data or
in bootstrap samples

Treatment effect N Y N N Y Y
Prognostic bmks 0 0 20 0 0 20
Predictive bmks 0 0 0 15 15 15
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Ternes BMC Med Res Meth 2017



Controlling for overfitting

Treatment effect N Y N N Y Y
Prognostic bmks 0 0 20 0 0 20
Predictive bmks 0 0 0 15 15 15

Ternes BMC Med Res Meth 2017



Controlling for overfitting

N Y N N Y Y
0 0 20 0 0 20
0 0 0 15 15 15

Treatment effect
Prognostic bmks
Predictive bmks

N Y N N Y Y
0 0 20 0 0 20
0 0 0 15 15 15
Ternes BMC Med Res Meth 2017



Application: Phase III trial in early breast cancer
Pogue-Geile et al (2013)

Retrospective biomarker study in RCT of early 
breast cancer patients
⇒	Randomized clinical trial (n = 1574 patients, p = 
462 genes)

Ternes BMC Med Res Meth 2017



Developed signature
with the ALASSO penalty

Prognostic component
Clinical variables (4) Treatment, ER status, Tumor size, Nodal status

Genomic variables
(p = 98)

ACTB, ADCYAP1, ANGPTL4, ARL8A, BBC3, BDH2, CAPS, CASC3,CCDC74A, 
CDC6,CDH3, CFLP1, CSNK1A1, CSNK1D, CXXC5,DHPS, DNAJC4, DPY19L4, ELAVL4, 
ELN, ENO1, ERBB4, FABP5,FAM84B, FBXW11,FKSG30, FLJ22659, FLJ22795, 
FLJ35390, FRAG1,FRMD4A, GHR, GPRIN1, GSN, HIST1H2AA,HIST2H2BE, IDUA, 
IGJ,IGKV2.24, ILF2,KCNE4, KIAA1920, KIF2C, KRT81, L3MBTL2,LCE3E, LOC400590, 
MAD2L2, MAP3K13,MBOAT2, MED13L, METTL3, MSI2, MTCH2, MVP, NAT1, 
NAT10, NDC80, NECAB3,NXPH3, OGFR, PCK2,PGM5, PHGDH,PITPNC1, PRPF40A, 
PTTG1, RBM14, RELB, RHBDD1, RND3, RPL34, RPS2, SFRP1,SLC25A28, 
SLC25A31,SLC25A5, SLC30A10,SLC6A19, SMCP, SOX4,SPDEF, SPP1, ST6GALNAC4, 
STEAP3, STK11IP,SULT1A2,TBXAS1, TCEB2, TFRC,TMSB10, TRABD, TUBB2C, 
UBE2W, UGDH, XYLT1, ZNF592, ZNF609

Treatment-effect modifying component
Genomic variables
(p = 24)

ATAD3A, C16orf14, C1orf93, CCL21, CD9,CIAPIN1, CLIC1, DKFZP434A0131, 
FAM148A,FNDC4, FURIN, KRTAP2.4, MED13L, MIA, MMD, ORMDL3, RPLP0,SIAH2, 
SLC39A14, SSBP2, THOP1, THRAP1,TMEM45B, UNC119

Prediction measures
C-statistic (C) 0.80 (1CV), 0.67 (2CV)

ΔC-statistic (ΔC) 0.23 (1CV), 0.02 (2CV) Ternes BMC Med Res Meth 2017



Graphical illustration

Ternes BMC 
Med Res 
Meth 2017



R package biospear



Biomarker-based strategy design

Buyse, Michiels et al, Expert Rev Mol Diag 2011 



Early breast cancer prevention: polygenic risk

Use of Single-Nucleotide Polymorphisms
andMammographic Density Plus Classic Risk Factors
for Breast Cancer Risk Prediction

Elke M. van Veen, MSc; Adam R. Brentnall, PhD; Helen Byers, BSc; Elaine F. Harkness, PhD; SusanM. Astley, PhD;

Sarah Sampson, BSc; Anthony Howell, MD;William G. Newman, MD, PhD; Jack Cuzick, PhD; D. Gareth R. Evans, MD

IMPORTANCE Single-nucleotide polymorphisms (SNPs) have demonstrated an association

with breast cancer susceptibility, but there is limited evidence on how to incorporate them

into current breast cancer risk predictionmodels.

OBJECTIVE To determine whether a panel of 18 SNPs (SNP18) may be used to predict breast

cancer in combination with classic risk factors andmammographic density.

DESIGN, SETTING, AND PARTICIPANTS This cohort study enrolled a subcohort of 9363women,

aged 46 to 73 years, without a previous breast cancer diagnosis from the larger prospective

cohort of the PROCAS study (Predicting Risk of Cancer at Screening) specifically to evaluate

breast cancer risk-assessment methods. Enrollment took place fromOctober 2009 through

June 2015 frommultiple population-based screening centers in Greater Manchester, England.

Follow-up continued through January 5, 2017.

EXPOSURES Genotyping of 18 SNPs, visual-assessment percentagemammographic density,

and classic risk assessed by the Tyrer-Cuzick risk model from a self-completed questionnaire

at cohort entry.

MAIN OUTCOMES ANDMEASURES The predictive ability of SNP18 for breast cancer diagnosis

(invasive and ductal carcinoma in situ) was assessed using logistic regression odds ratios per

interquartile range of the predicted risk.

RESULTS A total of 9363 womenwere enrolled in this study (mean [range] age, 59 [46-73]

years). Of these, 466were found to have breast cancer (271 prevalent; 195 incident). SNP18

was similarly predictive when unadjusted or adjusted for mammographic density and classic

factors (odds ratios per interquartile range, respectively, 1.56; 95% CI, 1.38-1.77 and 1.53; 95%

CI, 1.35-1.74), with observed risks being very close to expected (adjusted observed-to-

expected odds ratio, 0.98; 95% CI, 0.69-1.28). A combined risk assessment indicated 18% of

the subcohort to be at 5% or greater 10-year risk, compared with 30% of all cancers, 35% of

interval-detected cancers, and 42% of stage 2+ cancers. In contrast, 33% of the subcohort

were at less than 2% risk but accounted for only 18%, 17%, and 15% of the total, interval, and

stage 2+ breast cancers, respectively.

CONCLUSIONS AND RELEVANCE SNP18 added substantial information to risk assessment

based on the Tyrer-Cuzick model andmammographic density. A combined risk is likely to aid

risk-stratified screening and prevention strategies.

JAMA Oncol. doi:10.1001/jamaoncol.2017.4881
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scored on a linear scale ranging from 0 to 100 for the density

of thebreast. Thederivedpercentagedensitywas adjusted for

BMI and age and reported as a density residual(DR) and was

also expressed as an OR by calibrating and standardizing it to

the wider cohort.8Womenwith bilateral cancer on prevalent

study screen or with breast implants had no assessable VAS

score and were given a pro rata DR of 1.0. The Tyrer-Cuzick

10-year risk (v6)wasbasedonclassic risk factors fromtheques-

tionnaire self-reported at entry.

Baselinecharacteristicswerecomparedbetweencasepatients

and controls, and between those included in the case-cohort

studyandthosenot.DifferencesbetweentheDRafteradjustment

for parity were assessed by a Wald test from a linear model.

The predictive ability (discrimination) of SNP18 was assessed

usinglogisticregressionwithWaldconfidenceintervals(CIs) ,and

expressed as the OR per interquartile range (IQR) in controls.

Calibration of the observed-to-expected (O/E) SNP18 OR was

estimated using the log score regression coefficient and 95%

Wald CI, so that O/E = 1would indicate perfect calibration, and

further inspectedbySNP18decile,withCIs followingtheWilson

methodforthebinomialparameter.Adjustedanalyseswereused

to assess SNP18beyondmammographic density and theTyrer-

Cuzickmodel.Subgroupswereconsideredfor(1)absenceofbreast

cancer at the time the saliva samplewas provided (prospective

substudy);(2)estrogen-receptor(ER)statususingaWilcoxontest;

and (3) presence of DCIS and/or invasive cancer.

A combined 10-year risk was calculated assuming inde-

pendencebymultiplying theTyrer-Cuzick 10-yearabsolute risk

byDRandSNP18. Itwas stratified in 10-year risk groups as fol-

lows: less than 2%; 2.00% to 3.49%; 3.50% to 4.99%, 5.00%

to 7.99%, and 8.00%or higher risk,8 for which the frequency

of cases and percentage of controls were determined, and by

cancer stage, time of diagnosis, and only those cases of diag-

nosed breast cancer that occurred after the saliva sample col-

lection. A sensitivity analysis using computer simulation as-

sessed the predicted percentage of the wider PROCAS cohort

with VAS measurements (50 588 participants) in each risk

category, based on the results from the case-cohort study

(eMethods in the Supplement). Area under the receiver oper-

ating characteristic curve (AUC) statistics with 95% DeLong

CIs were calculated to assess discrimination.

The number of cancers expected was estimated from

Tyrer-Cuzick 10-year risks censored at the time of breast

cancer diagnosis, death, or January 5, 2017, whichever was

earliest.ExactPoissonCIsweregivenfor rates.A2-sidedP < .05

was considered significant.

Results

A total of 57902 participants were recruited to the PROCAS

cohort, of whom 907 were diagnosed with breast cancer

before entry. SNP18 was available for 9899 women. After

536 women diagnosed with breast cancer before entering

PROCAS were excluded, 9363 women were included in the

cohort, of whom 466 were diagnosed with breast cancer (in-

cluding 89with DCIS) at the baseline mammogram or during

follow-up (eFigure in the Supplement).

The quality of the Sequenom MassARRAY iPLEX and

TaqMan assays was assured, as there was 100% concordance

of genotyping between duplicate samples for all SNPs.

The baseline characteristics reported in eTable 2 in the

Supplement indicate thatmostwomenwereoverweight (BMI,

>25) and older than 56 years. Compared with those in the co-

hort who were not included, controls were older, less over-

weight, more likely to have had childrenwhen older or not at

all, had a family history of breast cancer, and had a previous

breast biopsy (eTable 2 in the Supplement). Cases included

werealso slightlyolder, lessoverweight, and less likely tohave

children. Because some selection bias was reflected in ques-

tionnaire risk factor differences betweenwomenwho volun-

teered to donate saliva and those who did not, we only ad-

justed for the Tyrer-Cuzick model in the main case-cohort

analysis anddidnotdirectly assess its predictive ability. There

was a significant difference in mammographic density be-

tween the controls included and excluded (mean breast den-

sity, 25.8%vs 23.9%; P < .001), with a higher average density

for those included. However, the difference was mostly ex-

plained by BMI and parity (DR adjusted for parity).

A nonsignificant correlation was observed between the

SNP18andDR(Spearman0.019,P = .07), butasignificant small

correlation between SNP18 and the 10-year Tyrer-Cuzick risk

was seen (Spearman0.031,P = .003), indicating that these risk

factors have very small correlations.

SNP18 polygenic risk score (OR) was higher in case pa-

tients (median, 1.12; IQR,0.87-1.33) thancontrols (median, 1.01;

IQR, 0.77-1.19). It was almost perfectly calibrated across the

spectrumofpredicted relative risk subgroups (unadjustedO/E

OR, 1.03; 95%CI, 0.74-1.32) (Figure), indicating that SNP18 is

a very goodpredictor across the continuumof risk andhad an

unadjusted interquartile OR of 1.56 (95% CI, 1.38-1.77). Re-

sults were very similar after adjustment for the Tyrer-Cuzick

Figure. Unadjusted Observed vs Expected Odds Ratios
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The points show the value by decile with 95% confidence intervals extending

from each point horizontally; The line of best fit from a logistic regression is

shown in comparison with the theoretical line for perfect calibration. The data

and cut points for this plot are detailed in eTable 6 in the Supplement.

SNP18 indicates a panel of 18 single-nucleotide polymorphisms.
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We investigated how risk prediction for cases and con-
trols differed when the PRS was used to modify the BCSC

model absolute risk estimate. Figure 3 shows the percent-

ages of cases and controls classified within 5-year risk
strata according to estimates generated using the BCSCv2

and BCSCv2-PRS models. The BCSCv2-PRS model

classified 49 % of controls as having a 5-year risk B1 %
(Fig. 3a), compared with 33 % of controls according to the

BCSCv2 model (Fig. 3b). The 5-year risk threshold of

B1 % is considered low-risk, given the 5-year risk of an
average 50-year-old Caucasian woman is 1.3 % [34].

Additionally, the BCSCv2-PRS model classified more

cases as extremely high risk (5-year risk C3 %, indicated
by the dashed line in Fig. 3). The USPSTF currently rec-

ommends consideration of chemoprevention for women

with a 5-year risk C3 %. The BCSCv2-PRS model clas-
sified 18 % of cases above this threshold, compared with

7 % according to the BCSCv2 model. A similar effect was

seen when comparing 10-year risk estimates generated by

the unmodified BCSCv2 model and the BCSCv2 model

modified by the PRS (Fig. S3).
Calibration of the models was assessed using the Hos-

mer–Lemeshow test with the study population split into 10

subgroups of identical risk. There was no significant
deviation from expectation of the fitted-BCSC-PRS model

(Chi-squared = 975.7, p = 0.42), or the BCSCv2-PRS

model (Chi-squared = 937.0, p = 0.41).

Discussion

An 83-SNP polygenic risk score was a strong risk factor for
breast cancer whose effect was not diminished by adjust-

ment for family history, prior breast biopsy, or breast

density. Adding the PRS to the BCSC model improved
discrimination, suggesting the PRS plays a role in risk

stratification and exerts an effect distinct from clinical risk

factors and breast density. The BCSCv2-PRS classified
nearly three times as many cases into the high-risk (C3 %)

strata compared with the BCSCv2 model.

The results of our main analysis are mostly consistent
with prior studies. The AUROC of our PRS alone, 0.60

(95 % CI 0.57–0.64), is similar to the c-statistic of 0.62

(95 % CI 0.62–0.63) using a 77-locus PRS in a study of
over 30,000 cases and controls [21]. The only other study

on a combined PRS-BCSC model reported improved dis-

crimination when a 76-SNP PRS was added to the BCSC
model [22]. Our study replicated these results from Vachon

et al. using an 83-SNP PRS that included 71 SNPs from

that study. There were slight differences in the AUROC for
the BCSC-PRS model in our study (0.65, 95 % CI

0.61–0.68) compared with Vachon (0.69, 95 % CI

0.64–0.73) [22]. The reported AUC from the latter study
was based on a multiple sampling approach in the valida-

tion cohort and did not account for BMI in the BCSC

model.
The AUROC of 0.62 for the fitted-BCSC model was

lower than previously reported values, which range from

0.65 to 0.66 [8, 9, 22]. Matching by age and race/ethnicity,
two of the variables in the model, likely decreased its

predictive power. Furthermore, prior studies incorporated

solely incident cases while ours included both prevalent
and incident cancers. When the analysis was restricted to

incident cancers, the AUROC for the fitted-BCSC and

Fig. 1 The receiver operating characteristic curves for the polygenic
risk score (PRS), fitted-BCSC model (fitted-BCSC), and the fitted-
BCSC model plus polygenic risk score (fitted-BCSC-PRS) are
shown

Table 3 Areas under the
receiver operating characteristic
curve for risk models

Model AUROC* 95 % CI

Polygenic risk score (PRS) 0.60 0.57–0.64

BCSC model (fitted-BCSC) 0.62 0.59–0.66

BCSC model ? polygenic risk score (fitted-BCSC-PRS) 0.65 0.61–0.68

* p value\0.001 for difference across models
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Abstract Breast cancer risk assessment can inform the use
of screening and prevention modalities. We investigated

the performance of the Breast Cancer Surveillance Con-

sortium (BCSC) risk model in combination with a poly-
genic risk score (PRS) comprised of 83 single nucleotide

polymorphisms identified from genome-wide association

studies. We conducted a nested case–control study of 486
cases and 495 matched controls within a screening cohort.

The PRS was calculated using a Bayesian approach. The

contributions of the PRS and variables in the BCSC model
to breast cancer risk were tested using conditional logistic

regression. Discriminatory accuracy of the models was

compared using the area under the receiver operating
characteristic curve (AUROC). Increasing quartiles of the

PRS were positively associated with breast cancer risk,

with OR 2.54 (95 % CI 1.69–3.82) for breast cancer in the
highest versus lowest quartile. In a multivariable model,

the PRS, family history, and breast density remained strong

risk factors. The AUROC of the PRS was 0.60 (95 % CI
0.57–0.64), and an Asian-specific PRS had AUROC 0.64

(95 % CI 0.53–0.74). A combined model including the

BCSC risk factors and PRS had better discrimination than
the BCSC model (AUROC 0.65 versus 0.62, p = 0.01).

The BCSC-PRS model classified 18 % of cases as high-

risk (5-year risk C3 %), compared with 7 % using the
BCSC model. The PRS improved discrimination of the

BCSC risk model and classified more cases as high-risk.

Further consideration of the PRS’s role in decision-making
around screening and prevention strategies is merited.

Keywords Breast cancer ! Single nucleotide

polymorphisms ! Risk assessment ! Cancer surveillance and
screening
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H2020 funded clinical trial on a polygenic risk
based breast cancer screening strategy

http://mypebs.eu/

40-70 years-old women
Invitation by screening centers or 

self-referral

Dedicated visit

ELIGIBLE

Randomisation

Screening according to 
ongoing national 

recommendations

Saliva test and risk score
Genotyping

Stratified screening according 
to estimated 5-year risk

Exclusion criteria:
Women with prior breast cancer or 

already identified very high risk

N = 85 000 pts 
randomized over 2.5 years

and followed 4 years

Baseline mammogram acc. to 
standard guidelines

Primary end-point: incidence of Stage II+ breast cancer in each arm

Arm 1 : standard Arm 2 : Risk based



Planned recruitment 
starting end 2018

http://mypebs.eu/



N° Concept Elaboration

1 Proof of concept Do signature levels differ substantially between patients with and 
without outcome?

2 Analytical validity Signature’s ability to accurately and reliably measure the genotype of 
interest between and within-laboratories

3 Clinical validity Does the signature predict risk of outcome in multiple external cohorts or 
nested case-control/case-cohort studies?

4 Incremental value Does the signature add enough information to established clinico-
pathological prognostic markers or provide a more reproducible 
measurement of one of them?

5 Clinical impact Does the signature change predicted risk sufficiently to change 
recommended therapy?

6 Clinical utility Does use of the signature improve clinical outcome, especially when 
prospectively used for treatment decisions in a randomized controlled 
trial?

7 Cost-effectiveness Does use of the signature improve clinical outcome sufficiently to justify 
the additional costs of testing and treatment?

Michiels Ann Onc 2016

Evidence-based criteria for a prognostic gene 
signature in the path from the lab to the clinic



Another strategy trial: SHIVA

11 MTAs = molecular targeted agents

Paoletti, Michiels 2017; Le Tourneau Lancet Oncol 2015



Heterogeneity of treatment effects
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285 homogeneity assumption. Statistically, lack of homogeneity corresponds to an in-
286 teraction between the MTA effect and patients characteristics. In other words, the
287 algorithm to select the right treatment would be efficient for some molecular
288 alterations (or equivalently for some MTAs) and not for others. For instance, in the
289 SHIVA trial suppose that the MTA selected to match an alteration on the
290 PI3 K/AKT/mTOR pathway is not active in this subset of patients; this would
291 reduce the power of the primary analysis.
292 To illustrate this aspect, let’s consider the following framework. We consider
293 that the outcome is a binary endpoint, e.g. PFS rate at six months assuming no
294 censored observations before 6 months. Six strata of equal prevalence are consid-
295 ered. The trial is designed to demonstrate an increase in the 6-month PFS rate from
296 15 to 33%, that is an odds ratio (OR) of 2:67. As reported in [23], the power of the
297 experiment in presence of heterogeneity across strata would be lower than the
298 planned 80%. In the forest plots in Fig. 3, each line represents the expected MTA
299 effect in a different stratum as measured with an odds ratio (OR) for the binary
300 outcome considered here. In panel A, we have homogeneity of the MTA effect
301 across all strata: whatever the signaling pathway and the prognostic group, the odds
302 ratio for PFS 2.67. Conversely, in panel B, the MTA has no effect in one of the
303 strata and the overall power of the primary stratified analysis is reduced from 80 to
304 66%. The magnitude of the power loss depends on the number of strata where the
305 MTA is not active, as shown in Table 2. The power calculation can be done
306 through simulations or exact calculations [12]. The size of each stratum has also a
307 direct impact on the power (results not shown). Homogeneity tests (or interaction
308 tests) are notoriously underpowered as shown in Table 2 and a strong heterogeneity
309 may remain statistically undetected at the 5% significance level.

Fig. 3 Impact of heterogeneity in the treatment effect related to the algorithm assuming balanced
prevalence for the six different strata and the same follow-up for all patients censored at the cut-off
date. High and low risk denote the risk group; Pathway 1, 2, 3 correspond to the grouping of the
different targets; MTA stands for molecularly targeted agent; CT stands for control treatment; N is
the total sample size; OR stands for odds ratio; Point estimates and 95% confidence intervals
(horizontal lines) are provided. Panel A Homogeneous benefit of the targeted treatment selected
based on molecular alterations in all strata (OR = 2.67); Panel B benefit of the targeted treatment
selected based on molecular alterations in all but one stratum
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Relaxed signifance levels for randomized
trials in rare diseases?

Long-term horizon (15y) 

Bayar A et al, Stat Med 2016; Le Deley et al Clin Trials 2015

26 Journal Title XX(X)

GuidanceComplianceRegulatoryInformation/Guidances/UCM458485.

pdf. (Accessed on 02/22/2018).

47. FDA. Us department of health and human services, food and drug administration. pediatric

rare diseases a collaborative approach for drug development using gaucher disease as a model

guidance for industry; draft guidance december, 2017, 12 2017. URL https://www.fda.

gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/

Guidances/UCM458485.pdf. (Accessed on 02/22/2018).
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A Appendix

A.1 Illustration of one repetition of a series of four consecutive

two-arm RCTs
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�
C
1

�
E
1

!"!"!"

!"!"!"
!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!"

!"!"!" !"!"!"

!"!"!"

�
C
2

�
E
1

�
C
1

�
E
2

�
C
3

�
C
2

�
C
2

⇥

�
E
3 �

C
4

�
E
3

�
C
3

⇥

�
E
4

�
C
4

�
C
4

⇥ = �
C
4

�
C
1

The hazard rate �
C

1 of the control treatment of the first trial characterizes the
severity of the underlying disease as perceived at the beginning of the research
horizon.

Prepared using sagej.cls



Relaxed signifance levels for randomized
trials in rare diseases?

Long-term horizon (15y) 
• Historical distribution of treatment effects
• Performing a series of small randomized trials with relaxed

α-levels leads, on average, to larger survival benefits
over a long horizon compared with larger trials with a 
2.5% one-sided α-level for a moderate increase in risk

• The recommendation is only valid when considering a 
series of trials run over a relatively long research horizon 
and when the supply of new treatments is large

• Performing multi-arm multi-stage trials with relaxed a-level
can further increase the expected survival benefit on the 
long run (unpublished work) 

Bayar A et al, Stat Med 2016; Le Deley et al Clin Trials 2015
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