

Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale

sesstim.univ-amu.fr

Stefan MICHIELS

Service de Biostatistique et d'Épidémiologie, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France. CESP, INSERM, Université Paris-Saclay, Univ. Paris-Sud, UVSQ, Villejuif, France.

Paradigmes statistiques pour les essais cliniques moléculaires et l'analyse des biomarqueurs prédictifs en oncologie

mai 2019

Cliquez ici pour voir l'intégralité des ressources associées à ce document

Paradigmes statistiques pour le design d'essais cliniques moléculaires et l'analyse des biomarqueurs prédictifs en oncologie

Stefan Michiels, PhD

Head of Oncostat team, CESP, INSERM U1018, Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Paris-Sud University, Villejuif, France stefan.michiels@gustaveroussy.fr

Many types of biomarker-based trials already in 2011-13

Table 2. Trial designs using biomarkers.					
Trial phase	Treatment	Biomarker type	Validated biomarker	Trial design	Examples
	Standard	Prognostic	No	Retrospective series	MammaPrint™ in early breast cancer Oncotype DX® in early breast cancer
	Standard	Predictive	No	Retrospective analyses of randomized trials	Oncotype DX in early breast cancer (SWOG-8814) <i>KRAS</i> mutations in advanced colorectal cancer (CRYSTAL) <i>EGFR</i> mutations in non-small-cell lung cancer (IPASS)
	Standard	Prognostic	No	Clinical utility	MINDACT in early breast cancer TAILORx in early breast cancer
	Standard	Predictive	No	Randomize-all Interaction Biomarker strategy	MARVEL in non-small-cell lung cancer P53 in advanced breast cancer ERCC1 in non-small-cell lung cancer
II	Experimental	Predictive	Yes	Targeted Bayesian	Herceptin in advanced breast cancer BATTLE in non-small-cell lung cancer I-SPY 2 in advanced breast cancer
III	Experimental	Predictive	Yes	Targeted	PETACC-8 in advanced colorectal cancer TOGA in advanced gastric cancer
II	Experimental	Predictive	No	Adaptive parallel Tandem two-step TTP ratio	Dovitinib in HER2-negative advanced breast cancer Saracatinib in pancreatic cancer Molecular profiling in various tumor types
	Experimental	Predictive	No	Enrichment Prospective subset	IPASS in non-small-cell lung cancer SATURN in non-small-cell lung cancer
TTP: Time to progression.					

Buyse, Michiels et al, Expert Rev Mol Diag 2011; Buyse, Michiels Curr Op Oncol 2013

Prognostic vs predictive

Predictive gene signature Qualitative interaction

Example of survival curves in experimental (Exp) versus control (Ctrl) arms for patients with a high gene signature score (High score) versus patients with a low gene signature score (Low score) in the case of a prognostic gene signature (top left) or a predictive gene signature, with either quantitative (bottom left) or qualitative (bottom right) interaction.

PREDICTIVE EFFECT: INTERACTION TEST

ISIS-2: aspirin vs control - effects on vascular death in 17,187 patients with acute myocardial infarction (Peto et al, Lancet 1988)

Predictive biomarkers for targeted therapies' prescription

Biomarker	Cancer type	Targeted therapies	Patients nb in 2016
KIT mutations	GIST	Imatinib	1 218
HER2 amplification	Breast and gastric cancers	Trastuzumab, lapatinib, pertuzumab, trastuzumab emtansine	10 832 (B) 770 (G)
RAS mutations	Colorectal cancer	Panitumumab, cetuximab	21 923
EGFR mutations	Lung cancer	Gefitinib, erlotinib, afatinib, osimertinib	28 563
ALK translocations	Lung cancer	Crizotinib, ceritinib, alectinib	23 434
ROS1 translocations	Lung cancer	Crizotinib	17 680
BRAFV600 mutation	Melanoma	Vemurafenib, dabrafenib, trametinib, cobimetinib	5 583
BCR-ABL translocation	Chronic Myeloid Leukaemia/ Acute Lymphoblastic Leukaemia	Imatinib, nilotinib, dasatinib, ponatinib, bosutinib	9 570
17p deletion / TP53 mutation	Chronic Lymphocytic Leukaemia	Ibrutinib, idelalisib	2 857 1 808
BRCA mutation (somatic)	Ovarian cancer	Olaparib	1 608

F. Nowak, French National Cancer Institute

• For definitions, see also The European Society for Medical Oncology (ESMO) Precision Medicine Glossary. Ann Onc 2017

West Jama Oncol 2017

Molecular screening platforms in France funded by National Cancer Institute (INCa)

Predictive molecular testing in France in 2015: Activity of the 28 molecular genetics centres

Basket trial in France: Acsé

- Crizotinib is registered for the treatment of patients with ALK+ or ROS1+ lung cancer.
- Crizotinib targets are also altered in a wide range of malignancies in adults and children.
- To generate high evidence-based knowledge and to prevent off-label use, the French National Cancer Institute launched the AcSé Program in 2013 in an exploratory multi-basket phase II trial
- About 150 participating centers
- Frequentist / bayesian design

Trial of molecular screening

- The natural history of most advanced tumors suggests that PFS2/PFS1 < 1
- Null hypothesis: <a href="mailto: 1.3

Von Hoff, JCO 2010; Mick, Contr ClinTrials 2000

MOSCATO 01 trial:

High through-put analysis in a high volume phase I center

- Monocentric
- Target accrual > 1000 patients

MOSCATO 01 trial

MOSCATO 01 trial

33% of 193 evaluable pts presented a PFS2/PFS1 > 1.3 (95% CI, 26%–39%)

MOSCATO 01 trial

Issues in the MOSCATO 01 molecular screening trial

- In MOSCATO 01, only 199 out of 1035 adult pts received a matched targeted treatment
- Is PFS2/PFS1 a relevant endpoint and what does it mean a null hypothesis of <15% of the pts have PFS2/PFS1 > 1.3 ?
- If within-patient correlation of PFS2/1 is moderate in natural history, a higher proportion of pts with PFS2/PFS1 > 1.3 can be expected under the null (Paoletti, Michiels 2017)
- Non-randomized trial, so no evidence that standard treatment would have yielded inferior results ...

Overall survival results in MOSCATO 01of any targeted treatment (TT) in patients with actionable targets

Survival curves

The inverse probability weighting (IPW) method with a propensity score was used to estimate a causal effect in a Cox model: HR=0.9 [0.7,1.1], p=0.4

El Dakdouki et al AACR Annual Conference 2018; Cancer Res 2018;78(13 Suppl):Abstract nr 2953.

The many advantages of randomization...

- Protects against selection bias and makes groups comparable for benefit/risk
- Allows to evaluate predictive or treatmentmodifying effect (vs prognostic)

Statistical framework for discovering predictive biomarkers

Proportional hazard model

 $h(t; T_i, X_i) = h_0(t) \exp\{\alpha T_i + \beta^{\mathsf{T}} X_i + \gamma^{\mathsf{T}} T_i X_i\}$

with

- $h_0(t)$ the baseline hazard function at times t > 0
- T_i the treatment arm
- X_i the p-dimensional vector of biomarkers

and with $\gamma^T T_i X_i$ accounting for the treatment-by-biomarkers interaction

Statistical issues

$$h(t; T_i, X_i) = h_0(t) \exp\{\alpha T_i + \beta^{\mathsf{T}} X_i + \gamma^{\mathsf{T}} T_i X_i\}$$

Aim: selection of the relevant interactions $T_i X_i$ Issue: The model with <u>all</u> the main effects $\beta^T X_i$ is not identifiable or at least very DoF-consuming

→ How to select the relevant interactions while properly accounting for the main effects?

(A)LASSO

Full LASSO.

$$l_p(\alpha, \beta, \gamma) = l(\alpha, \beta, \gamma; T, X) - \lambda(\mathbf{1}^{\mathsf{T}}|\beta| + \mathbf{1}^{\mathsf{T}}|\gamma|)$$

Adaptive LASSO. $l_p(\alpha, \beta, \gamma) = l(\alpha, \beta, \gamma; T, X) - \lambda (w_\beta^{\mathsf{T}} |\beta| + w_\gamma^{\mathsf{T}} |\gamma|)$

- Pros. Simple. Sparse models, easy interpretation.
 Solid results in our simulation study
- **Cons.** No hierarchy constraint for interaction

Ternes Biom J. 2017

Estimation of expected survival after penalisation

$$h(t; T_i, \mathbf{X}_i) = h_0(t) \exp\{\alpha T_i + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{X}_i + \boldsymbol{\gamma}^{\mathsf{T}} T_i \mathbf{X}_i\}$$
$$l_p(\boldsymbol{\beta}) = l(\boldsymbol{\beta}; \mathbf{X}) - p_\lambda(\boldsymbol{\beta})$$

Ternes BMC Med Res Meth 2017

Accounting for prognostic biomarkers

$$h(t; T_i, \boldsymbol{X}_i) = h_0(t) \exp\{\alpha T_i + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{X}_i + \boldsymbol{\gamma}^{\mathsf{T}} T_i \boldsymbol{X}_i\}$$

Estimation of the survival probability

Controlling for overfitting

Integrated Brier Score

Ternes BMC Med Res Meth 2017

Controlling for overfitting

Uno C-index

Delta C-index

Application: Phase III trial in early breast cancer

Pogue-Geile et al (2013)

Retrospective biomarker study in RCT of early breast cancer patients

⇒ Randomized clinical trial (n = 1574 patients, p = 462 genes)

	Chemotherapy	Chemotherapy +
Characteristics	only	adj. trastuzumab
Overall	795	779
Nodal status		
1 – 3 positive	444 (56%)	448 (57%)
4 – 9 positive	238 (30%)	232 (30%)
\geq 10 positive	113 (14%)	99 (13%)
ER status		
Negative	360 (45%)	375 (48%)
Positive	435 (55%)	404 (52%)
Tumor size (cm)		
Mean (SD)	2.9 (1.7)	2.9 (1.8)

Ternes BMC Med Res Meth 2017

Developed signature with the ALASSO penalty

Prognostic component				
Clinical variables (4)	Treatment, ER status, Tumor size, N	Iodal status		
Genomic variables (p = 98)	ACTB, ADCYAP1, ANGPTL4, ARL8A, CDC6,CDH3, CFLP1, CSNK1A1, <i>CSN</i> ELN, ENO1, ERBB4, FABP5,FAM84B FLJ35390, FRAG1,FRMD4A, GHR, G IGJ,IGKV2.24, ILF2,KCNE4, KIAA192 MAD2L2, MAP3K13,MBOAT2, MED NAT10, NDC80, NECAB3,NXPH3, OG PTTG1, RBM14, RELB, RHBDD1, RN SLC25A31,SLC25A5, SLC30A10,SLCG STEAP3, STK11IP,SULT1A2,TBXAS1, UBE2W, UGDH, XYLT1, ZNF592, ZN	BBC3, BDH2, CAPS, CASC3,CCDC74A, <i>K1D</i> , CXXC5,DHPS, DNAJC4, DPY19L4, ELAVL4, , FBXW11,FKSG30, FLJ22659, FLJ22795, PRIN1, GSN, HIST1H2AA,HIST2H2BE, IDUA, 0, KIF2C, KRT81, L3MBTL2,LCE3E, LOC400590, 13L , METTL3, MSI2, MTCH2, MVP, NAT1, GFR, PCK2,PGM5, PHGDH,PITPNC1, PRPF40A, D3, RPL34, RPS2, SFRP1,SLC25A28, 6A19, SMCP, <i>SOX4,SPDEF</i> , SPP1, ST6GALNAC4, TCEB2, TFRC,TMSB10, TRABD, TUBB2C, F609		
Treatment-effect mod	ifying component			
Genomic variables (p = 24)	ATAD3A, C16orf14, C1orf93, <i>CCL21</i> FAM148A,FNDC4, FURIN, KRTAP2.4 SLC39A14, SSBP2, THOP1, THRAP1,	<i>, CD9,CIAPIN1,</i> CLIC1, DKFZP434A0131, 4, MED13L , MIA, MMD, ORMDL3, RPLP0,SIAH2, ,TMEM45B, UNC119		
Prediction measures				
C-statistic (C)	0.80 (1CV), 0.67 (2CV)			
ΔC -statistic (ΔC)	0.23 (1CV), 0.02 (2CV)	Ternes BMC Med Res Meth 2017		

Graphical illustration

Ternes BMC Med Res Meth 2017

R package biospear

Bioinformatics, 2017, 1–2 doi: 10.1093/bioinformatics/btx560 Advance Access Publication Date: 12 September 2017 Applications Note

OXFORD

Genome analysis

biospear: an R package for biomarker selection in penalized Cox regression

Nils Ternès^{1,2}, Federico Rotolo^{1,2} and Stefan Michiels^{1,2,*}

¹Gustave Roussy, Université Paris-Saclay, Service de biostatistique et d'épidémiologie, Villejuif, F-94805, France and ²Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, F-94805, France

*To whom correspondence should be addressed Associate Editor: John Hancock

Received on June 7, 2017; revised on August 11, 2017; editorial decision on September 2, 2017; accepted on September 5, 2017

Abstract

Summary: The R package biospear allows selecting the biomarkers with the strongest impact on survival and on the treatment effect in high-dimensional Cox models, and estimating expected survival probabilities. Most of the implemented approaches are based on penalized regression techniques. Availability and implementation: The package is available on the CRAN. (https://CRAN.R-project.org/package=biospear)

Contact: stefan.michiels@gustaveroussy.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

Biomarker-based strategy design

Buyse, Michiels et al, Expert Rev Mol Diag 2011

Early breast cancer prevention: polygenic risk

Figure. Unadjusted Observed vs Expected Odds Ratios From SNP18 by Decile

Breast Cancer Res Treat (2016) 159:513–525 DOI 10.1007/s10549-016-3953-2

EPIDEMIOLOGY

Breast cancer risk prediction using a clinical risk model and polygenic risk score

JAMA Oncology | Original Investigation

Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction

Elke M. van Veen, MSc; Adam R. Brentnall, PhD; Helen Byers, BSc; Elaine F. Harkness, PhD; Susan M. Astley, PhD; Sarah Sampson, BSc; Anthony Howell, MD; William G. Newman, MD, PhD; Jack Cuzick, PhD; D. Gareth R. Evans, MD

Fig. 1 The receiver operating characteristic curves for the polygenic risk score (PRS), fitted-BCSC model (fitted-BCSC), and the fitted-BCSC model plus polygenic risk score (fitted-BCSC-PRS) are shown

H2020 funded clinical trial on a polygenic risk based breast cancer screening strategy

Planned recruitment starting end 2018

http://mypebs.eu/

Evidence-based criteria for a prognostic gene signature in the path from the lab to the clinic

N°	Concept	Elaboration
1	Proof of concept	Do signature levels differ substantially between patients with and without outcome?
2	Analytical validity	Signature's ability to accurately and reliably measure the genotype of interest between and within-laboratories
3	Clinical validity	Does the signature predict risk of outcome in multiple external cohorts or nested case-control/case-cohort studies?
4	Incremental value	Does the signature add enough information to established clinico- pathological prognostic markers or provide a more reproducible measurement of one of them?
5	Clinical impact	Does the signature change predicted risk sufficiently to change recommended therapy?
6	Clinical utility	Does use of the signature improve clinical outcome, especially when prospectively used for treatment decisions in a randomized controlled trial?
7	Cost-effectiveness	Does use of the signature improve clinical outcome sufficiently to justify the additional costs of testing and treatment?

Michiels Ann Onc 2016

Another strategy trial: SHIVA

Paoletti, Michiels 2017; Le Tourneau Lancet Oncol 2015

Heterogeneity of treatment effects

Fig. 3 Impact of heterogeneity in the treatment effect related to the algorithm assuming balanced prevalence for the six different strata and the same follow-up for all patients censored at the cut-off date. High and low risk denote the risk group; Pathway 1, 2, 3 correspond to the grouping of the different targets; MTA stands for molecularly targeted agent; CT stands for control treatment; *N* is the total sample size; OR stands for odds ratio; Point estimates and 95% confidence intervals (horizontal lines) are provided. *Panel A* Homogeneous benefit of the targeted treatment selected based on molecular alterations in all strata (OR = 2.67); *Panel B* benefit of the targeted treatment selected based on molecular alterations in all but one stratum

Paoletti, Michiels 2017

Relaxed signifance levels for randomized trials in rare diseases?

Long-term horizon (15y)

Illustration of one repetition of a series of four consecutive

two-arm RCTs

(1) The hazard rate λ_1^C of the control treatment of the first trial characterizes the severity of the underlying disease as perceived at the beginning of the research horizon.

Bayar A et al, Stat Med 2016; Le Deley et al Clin Trials 2015

Relaxed signifance levels for randomized trials in rare diseases?

Long-term horizon (15y)

- Historical distribution of treatment effects
- Performing a series of small randomized trials with relaxed α-levels leads, on average, to larger survival benefits over a long horizon compared with larger trials with a 2.5% one-sided α-level for a moderate increase in risk
- The recommendation is only valid when considering a series of trials run over a relatively long research horizon and when the supply of new treatments is large
- Performing multi-arm multi-stage trials with relaxed α-level can further increase the expected survival benefit on the long run (unpublished work)

Bayar A et al, Stat Med 2016; Le Deley et al Clin Trials 2015

Some References

- Buyse M, <u>Michiels S</u>, Sargent DJ., Grothey A., Matheson A., de Gramont A. Integrating biomarkers in clinical trials. Expert Rev Mol Diagn 2011;11:171-82.
- <u>Michiels S</u>, Ternès N, Rotolo F. Statistical controversies in clinical research: prognostic gene signatures are not (yet) useful in clinical Practice. Annals of Oncology 2016;27:2160–67
- Ternès N, Rotolo F, Heinze G, <u>Michiels S</u>. Identification of biomarker-bytreatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces. Biom J. 2017;59:685-701.
- Ternès N, Rotolo F, <u>Michiels S</u>. Biospear: an R package for biomarker selection in penalised cox regression. Bionformatics 2018;34:112-113.
- Ternès N, Rotolo F, <u>Michiels S.</u> Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. BMC Med Res Methodol. 2017 May 22;17(1):83.
- Paoletti X, <u>Michiels S</u>. Evaluating personalized medicine in multi-marker multitreatment clinical trials: accounting for heterogeneity, in Frontiers of Biostatistical Methods and Applications in Clinical Oncology (Publisher Springer ; Editors S Matsui, J Crowley), 2017
- Bayar MA, Le Teuff G, <u>Michiels S</u>, Sargent DJ, Le Deley MC. New insights into the evaluation of randomized controlled trials for rare diseases over a longterm research horizon: a simulation study. Stat Med 2016;35: 3245-58

Acknowledgments

We thank the NSABP investigators of the B-31 trial who submitted data from the study to dbGaP (Study Accession:phs000826.v1.p1) and the NIH data repository.

The B-31 trial was supported by NCI (Grants U10-CA-12027, U10-CA-69651, U10-CA-37377, and U10-CA-69974), a grant from the Pennsylvania Department of Health.