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The problematic of the method choice for survival prediction

» The prediction of the probability that a subject experienced an event is often of
interest.

» Several regressions can be used for right-censored data.:
» Most of the studies use proportional hazard (PH)-based assumption.
» Other models such as accelerated failure time (AFT) approaches are not frequent.
P> Regressions are based on assumption such as log-linearity, PH, specific
interactions, etc.
» Machine learning are increasingly used mainly because of their flexibility.

» Random survival forests.
» Survival neural networks.
» Support-vector machines.
> Etc.
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A super learner (SL) allows us to combine regressions and algorithms.

>

SL is an algorithm that uses cross-validation to estimate the performance of
multiple machine learning models.

It has been proven to be asymptotically as accurate as the best possible prediction
algorithm that is tested.

In 2011, Polley and van der Laan proposed a SL for right-censored data.

Two R packages were available :
» The first one was proposed by Golmakani et al. (2020). It allows us to obtain the
linear predictor of a PH regression.
» The second one was developed by Westling et al. (2021) with additional learners:
several parametric PH models, a generalized additive Cox regression, and a random
survival forest.

We aimed to extend these packages to additional learners and loss
functions.
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Notations

» Consider a subject i in a sample of N independent subjects (i =1, ..., N).

v

We note the time-to-event by T/.

» Right-censoring leads the observation of T; = min( T/, C;), where C; is the
censoring time.

» Let D; =1{T/ < C;} be the event indicator.

» The survival function at time t for a subject with the characteristics Z; at baseline

is defined by:
S(t| Zi) =PB(T7 > t| Z)
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The SL is estimated by minimizing the cross-validated loss function.

Sm(.) is the survival function obtained by the mt™" learner (m =1, ..., M).
Wp, is the corresponding weight with respect to Z:’l\/’ Wm=1and 0 < wp, <1.

The sample is randomly divided into V' cross-validated sub-samples.

vvvyyypy

For each of the folds, one can:

» Estimate the M learners from the training subjects.
» Tuning parameters should be tuned for each of the V folds.
» Predict Sp,(.) of the leaving subjects.

» The weights W, are then obtained by minimizing the loss function, i.e., distance
between the observations and the predictions Sg(t | Z) = M_, w,,,S,(t | 2).

> The final SL is obtained by Sy(t | Z) = S M_, WnSm(t | Z), where S,,(t | Z) are
estimated on the entire sample.
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The implemented models without tuning parameters

» Parametric AFT models (Weibull, Gamma and generalized Gamma distributions).
» Parameters are estimated by likelihood maximization by using the "flexsurv" package.

» Parametric PH models (Exponential or Gompertz distributions).
» Parameters are estimated by likelihood maximization by using the "flexsurv" package.

» Semi-parametric PH models with a non-parametric baseline hazard function
estimated by using the Breslow estimator

» Parameters are estimated by likelihood maximization by using the "survival" package.
» Option for covariates selection by forward AlC-based selection.
» Non-parametric baseline hazard function estimated by using the Breslow estimator.
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The implemented models/algorithms with tuning parameters

» Spline-based PH model proposed by Royston and Parmar.
» Parameters are estimated by likelihood maximization by using the "flexsurv" package.
» Penalized PH models (Lasso, Ridge, or Elastic-Net).
» Parameters are estimated by penalized likelihood maximization by using the
"glmnet" package.
» Random survival forests.
» Maximization of the Log-Rank statistic by using the "randomSRC" package.
» Survival neural networks.

» Maximization of the entropy of a partial logistic regression approach
"survivalPLANN" package.
» https://github.com/chupverse/survivalPLANN
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The implemented loss functions.

The log-Likelihood.

The area under the time-dependant ROC curve up to time t.

The Pencina's concordance index at time t.

The Uno’s concordance index at time t.

The Brier Score (BS) for right-censored data and a prediction at time t.
The negative binomial log-likelihood (BLL) for a prognostic at time t.
The integrated BS and BLL up to the maximum follow-up time.

The restricted integrated BS and BLL up to a time t.

VVvYyVvYvVvyVvYVYYy
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The objectives of the simulations

» We principally aim to describe the performances of our proposed package.

v

We also compared our SL with the package proposed by Westling (2021).

» In the SL proposed by Westling we included the 5 possible learners: the PH model
with the Breslow estimator, the Exponential PH model, the random survival forest,
the Lasso PH model and the PH model with covariates’ selection (p < 0.05).

» In our proposed SL, we included the 7 learners: the PH model with the Breslow
estimator, the same model with forward selection based on AIC minimization, the
Elastic-Net PH model, the random survival forest, the Exponential PH model, the
Gamma distribution-based AFT model, and the survival neural network.

» We used the default grid of the tuning parameters.
» The SL weights were estimated by minimizing the integrated BS (IBS).
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The data generation

> We generated 1000 data sets for each scenario.

» The times-to-event were obtained from Weibull distributions and the PH
assumption.

» The censoring times were generated from uniform distributions to obtain a 40%
censoring rate.

» We studied two sample sizes for learning (200 and 500).

v

The validation samples were composed of 500 subjects.

> We proposed two contrasting simple and complex scenarios.
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The design of the simple scenario
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Simple scenario: the SL performed as well as semi-parametric approaches
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Complex scenario: the SL performed the best
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Figure 2: Simulation results in the complex context. A1-N = 200 for learning in the two top
plots. A2-N = 500 for learning in the two bottom plots.
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Complex scenario: running times
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Figure 3: Running times according to the sample size and the number of covariates. Results obtained
for a MacBook Pro 2.6 GHz Intel Core i7 6 cores.
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Objectives & data

» To construct an algorithm for predicting the time to disease progression after the
initiation of a first-line treatment (baseline T* = 0).

> To compare its prognostic capacities up to 2 years with those of the existing Rio
score .

» A data set 1,300 simulated patients from the OFSEP cohort.

1 library ("survivalSL")

> data(dataOFSEP); head(dataOFSEP)

3

4 #> time event age duration period gender relapse edss tl t2 rio
5 #>  2.1195051 1 34 1113 0 1 1 1low 001

6 #> 0.8160995 1 37 1296 0 1 1 high 1+ 0 1

7 #> 1.9709546 1 33 995 1 1 0 1low 0 00

g #> 2.5881311 1 35 858 1 1 0 1low 00O

9 #> 1.4726224 1 31 759 1 0 2+ miss 1+ 0 2

10 #> 1.6970962 1 40 1642 1 1 0 high O 0 O

Super Learner for survival prediction 20/31



lllustration in multiple sclerosis
00@0000000

Data management...

1 # codage of the predictors

dataOFSEP$relapse.l <- 1*(dataOFSEP$relapse=="1")
dataOFSEP$relapse.2 <- 1*(dataOFSEP$relapse=="2+")
dataOFSEP$edss.1 <- 1x(dataOFSEP$edss=="1low")
dataOFSEP$edss .2 <- 1*(dataOFSEP$edss=="high")
dataQFSEP$t1.1 <- 1*(dataOFSEP$t1=="0")
dataOFSEP$t1.2 <- 1x(dataOFSEP$tl=="1+")

N

© © N o O &~ W

#two-thirds of the sample to train and other third validation

10 set.seed (117)

11 dataOFSEP$train <- l*rbinom(n=dim(dataOFSEP) [1], size=1, prob=2/3)
12 dataTRAIN <- dataOFSEP[dataOFSEP$train==1,]

13 dataVALID <- dataOFSEP[dataOFSEP$train==0,]
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The SL training

» Learners:
» Elastic-Net PH model with non-parametric Breslow hazard function,.
» Royston-Parmar Spline-based model.
» AFT model with generalized Gamma distribution.
» Random survival forest.

> We used the default grids to estimate the tuning parameters.

P> The weights were estimated to minimize the C-index at 2 years with a 30-fold CV.

.f <- Surv(time, event) ~ age + duration + period + gender +
relapse.l + relapse.2 + edss.l + edss.2 + t1.1 + t1.2

sll <- survivalSL(formula=.f, metric="uno_ci", data=dataTRAIN,
methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, show_progress=FALSE, seed=117)

[ T S O
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The contribution of the learners

-

print (sll, digits=4)

#> leaners weights

#> 1 LIB_COXen 0.1775

#> 2 LIB_PHspline 0.2519
#> 3 LIB_AFTggamma 0.3039
#> 4 LIB_RSF 0.2667

© 0 N o g B~ W N

#> Minimum of the 30-fold CV of the metric uno_ci:0.6851.

-
o
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Your own tuning grid

1 .tune <- vector("list",4)

2 .tune [[2]] <- list(k=1:6) # number of knots

3

4 812 <- survivalSL(formula=.f, metric="uno_ci", data=dataTRAIN,

5 methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
6 cv=30, optim.local.min=TRUE, param.tune=.tune, show_progress=FALSE,
7 seed=117)

8

9 print (sl2, digits=4)

10 #> leaners weights

11 #> 1 LIB_COXen 0.2486

12 #> 2 LIB_PHspline 0.3340
13 #> 3 LIB_AFTggamma 0.1773
14 #> 4 LIB_RSF 0.2401

16 #> Minimum of the 30-fold CV of the metric uno_ci:0.684.
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Predictive metrics from the training and validation samples

1 rbind(train = summary(sl2, method="sl", pro.time=2, digits=2)$metrics,
> test = summary(sl2, newdata=dataVALID, method="sl", pro.time=2, digits
=2)$metrics)

4 #> p_ci uno_ci auc bs ibs ribs bll ibll ribll 11

5 #> train 0.7463 0.7444 0.8056 0.1838 0.0813 0.0840 0.5487 NaN NaN
-465.7561

6 #> test 0.6737 0.6713 0.7036 0.2170 0.0924 0.0969 0.6232 NaN NalN
-595.7444
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Calibration plot at 2 years from the validation sample

1 plot(sl2, newdata=dataVALID, cex.lab=0.70,cex.axis=0.70, n.groups=5,
pro.time=2, col=2)
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Discriminative capacities up to 2 years from the validation sample

1 library ("RISCA")

> .pred <- predict(sl2, newdata=dataVALID)

3 dataVALID$sl <- 1 - .pred$predictions$sl[,sum(.pred$times<2)]

4

5 roc.sl <- roc.time(times="time", failures="event", variable="sl",
confounders=~1, data=dataVALID, pro.time=2,precision=seq(0.1, 0.9,
by=0.01))

7 roc.rio <- roc.time(times="time", failures="event", variable="rio",
confounders=~1, data=dataVALID, pro.time=2)

9 plot(roc.sl, col=2, type="1", xlab="1-Specificity", ylab="Sensitivity"
,cex.lab=0.8, cex.axis=0.8)

10 points(x=1-roc.rio$table$sp, y=roc.rio$table$se, col=4)

11 legend ("bottomright", legend=

12 paste("AUC =", round(roc.sl$auc, 3)), cex=0.8 )
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Discriminative capacities up to 2 years from the validation sample
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Conclusions

» Compared to the available R-based SL in this context of survival analysis, our
proposition allows a larger set of candidate learners and loss functions.

» The simulation study showed that our proposed functions performed well.
» The R package is available at:
https://cran.r-project.org/web/packages/survivalSL/index.html
» Bug reports on the Github:
https://github.com/chupverse/survivalSL/issues
» Full open paper for details:
https://journal.r-project.org/articles/RJ-2024-037
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