Machine learning for health: promises and methodological challenges

Gaël Varoquaux **:probabl.**

Statistical learning

Statistical learning

Statistical learning

Model complexity, data quantity

1 [Machine learning on health data](#page-7-0)

2 [Bridging the data to the application](#page-32-0)

G Varoquaux 3

Machine learning on health data

Classic machine learning tasks in medicine

Diagnostic models

From complex / incomplete data, describe patient's status

Prognostic models

Predict future evolution

Medical imaging

- Very complex data
	- **-** High dimensional
	- **-** Structured individual variability
- ■Typically, diagnostic tasks
	- **-** "the automated radiologist"
	- **-** seldom long-term outcomes

Medical imaging

- Very complex data
	- **-** High dimensional
	- **-** Structured individual variability
- ■Typically, diagnostic tasks
	- **-** "the automated radiologist"
	- **-** seldom long-term outcomes

Driven by data availability, more than clinical relevance

Imaging is a fraction of patients' information

An image is used within a *context*

■ Cheaper data is predictive Questionnaires predict better mental health than brain images [\[Dadi... 2021\]](#page-57-0)

Electronic Health records

Routine care and administrative data **Biological exams, doctors notes... Accounting, claims** *Everything* in the hospital

> Data "free", with a very good coverage

AP-HP (Paris hospitals) 39 hospitals ■8M patients per year

Covid outbreak: Hospital management

Covid+ patient flux

Changing reality

Covid outbreak: Hospital management

Covid outbreak: diagnostics

Patients COVID+: Comorbidities

Covid outbreak: diagnostics

Patients COVID+: Comorbidities

Machine learning to predict intensive care?

Useful for piloting, but not medical decisions $\hspace{0.8cm}$ we only captured doctors' decisions, optimal or not

Pronostic modeling: A study cohort

Extracted from AP-HP's records

■200 000 patients Claims: medical acts ■ Biological values

Predict future pathology?

■ Hospital re-admition **Predict type diagnostic?**

Best machine-learning approach? \blacksquare AI = deep learning ■ Epidemiology = Linear model

Modeling patient records: many modeling choices

- Many different codes
- \blacksquare Time dimension
- **1.** Time-wise aggregation *Build covariates from patient history* **Challenges**
	- **Demographics only**
	- Decayed counting
	- Embeddings locally-optimized
	- National embeddings (SNDS)

Modeling patient records: many modeling choices

- **Anna 1577 = 200 Age = 54 Gender = Female ZCQM008 A41 B01AA 2020 May 4 Insurance Status = RG I25 I08 C A12AX Residence = Le Havre** ₩ t0 t1 t2 t3
- **1.** Time-wise aggregation *Build covariates from patient history* **Challenges**
	- **Demographics only**
	- Decayed counting
	- Embeddings locally-optimized
	- National embeddings (SNDS)
- **2.** Supervised learning
	- **Linear model (logistic regression)**
	-
- Sequence model (transformer) G Varoquaux 14

Many different codes Time dimension

Benchmark a gradient of models, from **Random forest** simple to complex

Different models: best is not most complex

Logistic regression = epidemiology \blacksquare Transformer = AI

Best model = random forest **Model from machine learning**

M. Doutreligne

Why tree models $>$ deep learning on tabular data [\[Grinsztajn... 2022\]](#page-57-1)

Tree-based methods out-perform tailored deep architectures

Why tree models $>$ deep learning on tabular data [\[Grinsztajn... 2022\]](#page-57-1)

Tree-based methods out-perform tailored deep architectures

Tabular data Non-Gaussian marginals ■ Categorical features

Trees' inductive bias: Axis-aligned Each column is meaningful Non smooth

The data's natural geometry is neither smooth nor vectorial G Varoquaux and the control of the control

If we had more data

Classic machine learning trade offs:

Complex models need more data

M. Doutreligne

Why is health data small?

■ Most lack data: out-patient, a single visit ■ Pathologies have small prevalences

M. Doutreligne

More information: clinical notes

Clinical notes contain a huge amount of information on patients

They embed the context and the clinician's understanding

Clinical notes are messy

Clinical notes are messy

Deep learning for information extraction

Improves accuracy from .7 to .75

Health data

■ Different type of data, different type of models

- Medical imaging: challenges of external validity
- Text: pretrained language models and QA
- Health records: data preparation \odot

■ Always in a data-limited regime

Different goals

■ Diagnostic or information extraction Nowcasting to help care giver

Prognostic or future prediction

- Help individual decision
- Help resource management (piloting)

Predictors often fail to bring medical benefits

[\[Roberts... 2021\]](#page-58-1) out of 62 publications on machine-learning for Covid detection on chest X-ray: none with potential for clinical use

Data often reflect an application only partly

Information consequence of diagnostic

- **-** chest drain on pneumothorax X-rays [\[Oakden-Rayner... 2020\]](#page-58-2)
- **-** dermatologist circling skin lesions [\[Winkler... 2019\]](#page-59-0)

Sampling bias (non representative of target population)

External versus internal validity

Focus on "good" prediction scores pulls us to "beautiful" data

G Varoquaux 23 [\[Varoquaux and Cheplygina 2022\]](#page-58-0)

Bridging the data to the application

Data may not reflect application [\[Varoquaux and Cheplygina 2022\]](#page-58-0)

Prediction useless

Because it builds on consequences of diagnostic

- **-** chest drain on pneumothorax X-rays [\[Oakden-Rayner... 2020\]](#page-58-2)
- **-** dermatologist circling skin lesions [\[Winkler... 2019\]](#page-59-0)

■ Because of sampling bias

(data non representative of target population)

External versus internal validity

Focus on "good" prediction scores pulls us to "beautiful" data

Benin selection bias: "covariate shift" [\[Dockes... 2021\]](#page-57-2)

The covariate *X* change, but the link $X \to y$ is preserved

■A "simple" model fails (underfit) A flexible model succeeds, with enough data

Benin selection bias: "covariate shift" [\[Dockes... 2021\]](#page-57-2)

The covariate *X* change, but the link $X \to y$ is preserved

A flexible model succeeds, with enough data Reweighting helps for simple models or limited data

When selection bias breaks association [\[Dockes... 2021\]](#page-57-2)

An example: Selection based on M

A common cause to selection *^S* and the data (*X*, *^Y*) distorts the association between *X* and *Y*

When selection bias breaks association Example 2021 [\[Dockes... 2021\]](#page-57-2)

An example: Selection based on M

A common cause to selection *^S* and the data (*X*, *^Y*)

distorts the association between *X* and *Y*

More data, bigger models won't solve the problem

When selection bias breaks association [\[Dockes... 2021\]](#page-57-2)

An example: Selection based on M

A common cause to selection *^S* and the data (*X*, *^Y*)

distorts the association between *X* and *Y*

More data, bigger models won't solve the problem

Next, I'll expand a couple common cases

Censored data

Outcomes not yet observed Survival analysis

Survival analysis

Individuals not observed long enough to know their outcomes

Naive approach biased: *eg* even for a long-lasting disease, in a week-old outbreak the mean illness duration $<$ 1 week

A marked case of selection bias

Survival analysis: compensation terms in the loss [\[Alberge... 2024\]](#page-57-3)

■ Compute probability of censoring (increases with time)

■ Weight samples by inverse probability

Recovers true outcome probabilities

Can be used with stochastic solvers

Faster, better, than more complex schemes

Prediction to support decision

Prediction for decision making: causal effect

Health covariate ■ Can a predictive model orient intervention choices?

Prediction for decision making: causal effect

Health covariate

■ Can a predictive model orient intervention choices?

We need the outcome as function of an intervention of interest

Outcome

Prediction for decision making: causal effect

Health covariate

■ Can a predictive model orient intervention choices?

We need the outcome as function of an intervention of interest \blacksquare The proper quantity is the Individual treatment effect: comparing predicted outcomes for the same individuals

Outcome

Baseline health ■ Only one potential outcome observed per individual Machine learning to extrapolate across individuals

Healthy individuals did not receive the treatment (selection bias compared to balanced intervention distribution)

Healthy individuals did not receive the treatment (selection bias compared to balanced intervention distribution) Good risk-minimizer associates treatment to negative outcomes

Healthy individuals did not receive the treatment (selection bias compared to balanced intervention distribution) Good risk-minimizer associates treatment to negative outcomes ■ A worse predictor gives better causal inference

The error to minimize is not on the observed distribution but on both potential outcomes *Y*⁰ and *Y*¹

Healthy individuals did not receive the treatment (selection bias compared to balanced intervention distribution) Good risk-minimizer associates treatment to negative outcomes ■A worse predictor gives better causal inference

Inputs of predictors for decision making [\[Doutreligne... 2023\]](#page-57-5)

Using post-intervention information gives inapplicable prediction *eg* a drug lowers the blood pressure prediction with post-intervention measures of blood pressure

Inputs of predictors for decision making [\[Doutreligne... 2023\]](#page-57-5)

Using post-intervention information gives inapplicable prediction *eg* a drug lowers the blood pressure prediction with post-intervention measures of blood pressure

Many caveats with temporal data (*eg* health records), see [\[Doutreligne... 2023\]](#page-57-5)

Prediction to support decision

■ Contrast predictions of potential outcomes best causal inference
 \neq best usual predictor [\[Doutreligne and Varoquaux 2023\]](#page-57-4)

Don't predict from consequences of intervention

Data may not reflect application

It's not a question of best predicting *y* given *X*

■ Survival: individuals not observed long enough Causality: observed only one potential outcome per individual

More data, bigger learner won't fix the problem Need dedicated compensations

The soda team: Machine learning for health and social sciences

Machine learning for statistics Causal inference, biases, missing values

Health and social sciences Epidemiology, education, psychology

Tabular relational learning Relational databases, data lakes

Data-science software scikit-learn, joblib, skrub

Better machine learning for health

Health records, routine care = close to practice

Bridge the data to the application \blacksquare The health outcome is the focus

- But we seldom observe it without bias, censoring...
	- Survival, for pronostic models
	- Causality, for decision models

The data results from prior choices, existing practice

Better evaluation

- **Better metrics** close to application
- **Example 2** Account for variance in benchmarks

References I

- J. Alberge, V. Maladière, O. Grisel, J. Abécassis, and G. Varoquaux. Teaching models to survive: Proper scoring rule and stochastic optimization with competing risks. *arXiv preprint arXiv:2406.14085*, 2024.
- K. Dadi, G. Varoquaux, J. Houenou, D. Bzdok, B. Thirion, and D. Engemann. Population modeling with machine learning can enhance measures of mental health. *GigaScience*, 10(10):giab071, 2021.
- J. Dockès, G. Varoquaux, and J.-B. Poline. Preventing dataset shift from breaking machine-learning biomarkers. *GigaScience*, 10(9):giab055, 2021.
- M. Doutreligne and G. Varoquaux. How to select predictive models for causal inference? 2023. URL <https://hal.science/hal-03946902>.
- M. Doutreligne, T. Struja, J. Abecassis, C. Morgand, L. A. Celi, and G. Varoquaux. Causal thinking for decision making on electronic health records: why and how. *arXiv preprint arXiv:2308.01605*, 2023.
- L. Grinsztajn, E. Oyallon, and G. Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data? In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022.

References II

- X. Nie and S. Wager. Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*, 108(2):299–319, 2021.
- L. Oakden-Rayner, J. Dunnmon, G. Carneiro, and C. Ré. Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In *ACM Conference on Health, Inference, and Learning*, pages 151–159, 2020.
- J. Pearl and D. Mackenzie. *The book of why: the new science of cause and effect*. Basic books, 2018.
- M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung, A. I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer, ... Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and ct scans. *Nature Machine Intelligence*, 3(3):199–217, 2021.
- G. Varoquaux and V. Cheplygina. Machine learning for medical imaging: methodological failures and recommendations for the future. *NPJ digital medicine*, 5(1):1–8, 2022.
- G. Varoquaux and O. Colliot. Evaluating machine learning models and their diagnostic value. <https://hal.archives-ouvertes.fr/hal-03682454/>, 2022.

References III

J. K. Winkler, C. Fink, F. Toberer, A. Enk, T. Deinlein, R. Hofmann-Wellenhof, L. Thomas, A. Lallas, A. Blum, W. Stolz, ... Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. *JAMA Dermatology*, 155(10):1135–1141, 2019.