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Machine learning for health:
promises and methodological challenges

Gaël Varoquaux
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Model complexity, data quantity

Fit complex models:
More degrees of freedom

than data

Notion of overfit
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1 Machine learning on health data



Classic machine learning tasks in
medicine

Diagnostic models
From complex / incomplete data,
describe patient’s status

Prognostic models
Predict future evolution

G Varoquaux 5



Medical imaging

Very complex data
- High dimensional
- Structured individual variability

Typically, diagnostic tasks
- “the automated radiologist”
- seldom long-term outcomes

Too little too late
Data very infrequent n∼1000

Only the broken ones
Very expensive data
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Driven by data availability, more than clinical relevance
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Kaggle lung
  challenge

lung-cancer studies
published in AI

breast-cancer studies
published in AI
lung-cancer studies
published in medical
oncology
breast-cancer studies
published in medical
oncology

A data challenge changes the field’s focus
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Imaging is a fraction of patients’ information

An image is used within a context

Cheaper data is predictive
Questionnaires predict better mental health

than brain images [Dadi... 2021]
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Electronic Health records

Routine care
and administrative data

Biological exams, doctors notes...
Accounting, claims
Everything in the hospital

Data “free”,
with a very good coverage

AP-HP (Paris hospitals)
39 hospitals
8 M patients per year
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Covid outbreak: Hospital management

Inform
hospital-level decisions

Covid+ patient flux
Consultation

SAU

Hosp.
Conv.
MCO

Réa. MCO

SSR

HAD

Entrée Directe SLD

Déjà Hospitalisé Décédé

Transfert

Domicile

Changing reality
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Covid outbreak: Hospital management

Patient flux forecasting
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Covid outbreak: diagnostics
Patients COVID+: Comorbidities
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autres agents bactériens (5.84%)
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diabète sucré non insulino-dépendant (12.80%)

hypertension essentielle (primitive) (17.97%)

examen de contrôle après traitement d'affections
autres que les tumeurs malignes (8.13%)

anomalies du métabolisme des lipoprotéines
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Machine learning to predict intensive care?
Useful for piloting, but not medical decisions

we only captured doctors’ decisions, optimal or not
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Pronostic modeling: A study cohort

Extracted from AP-HP’s records
200 000 patients
Claims: medical acts
Biological values

Predict future pathology?
Hospital re-admition
Predict type diagnostic?

Best machine-learning approach?
AI = deep learning
Epidemiology = Linear model

G Varoquaux 13



Modeling patient records: many modeling choices
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Many different codes
Time dimension

Demographics only
Decayed counting
Embeddings locally-optimized
National embeddings (SNDS)

2. Supervised learning
Linear model (logistic regression)

Benchmark a gradi-
ent of models, from
simple to complexRandom forest

Sequence model (transformer)
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Different models: best is not most complex

Logistic regression = epidemiology
Transformer = AI

Best model = random forest
Model from machine learning

G Varoquaux 15
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Why tree models > deep learning on tabular data [Grinsztajn... 2022]

Tree-based methods
out-perform tailored
deep architectures

The data’s natural geometry is neither smooth nor vectorial
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Why tree models > deep learning on tabular data [Grinsztajn... 2022]

Tree-based methods
out-perform tailored
deep architectures

Tabular data
Non-Gaussian marginals
Categorical features

Trees’ inductive bias:
Axis-aligned
Each column is meaningful

Non smooth
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If we had more data

Classic machine learning trade offs:
Complex models need more data

G Varoquaux 17
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Why is health data small?

Most lack data: out-patient, a single visit
Pathologies have small prevalences

G Varoquaux 18
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More information: clinical notes

Clinical notes contain a huge amount of information on
patients

They embed the context and the clinician’s understanding

G Varoquaux 19



Clinical notes are messy

Deep learning for
information extraction

Improves accuracy
from .7 to .75
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Health data

Different type of data, different type of models
- Medical imaging: challenges of external validity
- Text: pretrained language models and QA
- Health records: data preparation �

Always in a data-limited regime

Different goals
Diagnostic or information extraction

Nowcasting to help care giver
Prognostic or future prediction

- Help individual decision
- Help resource management (piloting)

G Varoquaux 21



Predictors
often fail

to bring medical benefits

[Roberts... 2021] out of 62 publications
on machine-learning for Covid

detection on chest X-ray:
none with potential for clinical use

G Varoquaux 22



Data often reflect an application only partly

Information consequence of diagnostic
- chest drain on pneumothorax X-rays [Oakden-Rayner... 2020]
- dermatologist circling skin lesions [Winkler... 2019]

Sampling bias (non representative of target population)

External versus internal validity
Focus on “good” prediction scores
pulls us to “beautiful” data

G Varoquaux 23
[Varoquaux and Cheplygina 2022]



2 Bridging the data to the application



Data may not reflect application [Varoquaux and Cheplygina 2022]

Prediction useless
Because it builds on consequences of diagnostic

- chest drain on pneumothorax X-rays [Oakden-Rayner... 2020]

- dermatologist circling skin lesions [Winkler... 2019]

Because of sampling bias
(data non representative of target population)

External versus internal validity
Focus on “good” prediction scores
pulls us to “beautiful” data

G Varoquaux 25



Benin selection bias: “covariate shift” [Dockès... 2021]

The covariate X change, but the link X → y is preserved
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Reweighting helps for simple models or limited data
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When selection bias breaks association [Dockès... 2021]

An example:

X

Y

Selection based on M

S

M

X

Y

Y ⊥̸⊥ S | X

A common cause to selection S and the data (X, Y)
distorts the association between X and Y

More data, bigger models won’t solve the problem

Next, I’ll expand a couple common cases
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Censored data

Outcomes not yet observed
Survival analysis

G Varoquaux 28



Survival analysis

Individuals not observed
long enough to know
their outcomes

Time

Start of Study End of Study

Competing
Risks
Multi-class:
different types of
outcomes

Unobserved outcomes

Right
Censoring

Naive approach biased: eg even for a long-lasting disease,
in a week-old outbreak the mean illness duration < 1 week

A marked case of selection bias
G Varoquaux 29
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Survival analysis: compensation terms in the loss [Alberge... 2024]

Compute probability of censoring (increases with time)

Weight samples by inverse probability

Recovers true outcome probabilities

Can be used with stochastic solvers

Faster, better, than
more complex
schemes

G Varoquaux 30



Prediction
to support decision

G Varoquaux 31



Prediction for decision making: causal effect

Health covariate

O
u
tc

o
m

e

Can a predictive model orient intervention choices?

We need the outcome as function of an intervention of interest
The proper quantity is the Individual treatment effect:

comparing predicted outcomes for the same individuals
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Causal inference and selection bias [Doutreligne and Varoquaux 2023]

Untreated outcomeY0(x)

Treated outcomeY1(x)

Untreated outcomeY0(x)

Treated outcomeY1(x)

Baseline health

Only one potential outcome observed per individual
Machine learning to extrapolate across individuals
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Causal inference and selection bias [Doutreligne and Varoquaux 2023]

Untreated outcomeY0(x)

Treated outcomeY1(x)

µ̂a(x)

Untreated outcomeY0(x)

Treated outcomeY1(x)

µ̂a(x)

Baseline healthHealthy individuals did not receive the treatment
(selection bias compared to balanced intervention distribution)

Good risk-minimizer associates treatment to negative outcomes
A worse predictor gives better causal inference

The error to minimize is not on the observed distribution
but on both potential outcomes Y0 and Y1
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Inputs of predictors for decision making [Doutreligne... 2023]

Using post-intervention information gives inapplicable prediction
eg a drug lowers the blood pressure
prediction with post-intervention measures of blood pressure

Causal criteria for variable inclusion:
[Pearl and Mackenzie 2018]

A Y

X

Confounder
✓

A Y

ExA

E

Effect modifier
✓

A

C

Y

Collider

E

A Y

IV

Instrumental
variableE

A M Y

A: Intervention Y: Outcome
X: Confounder C: Collider
M: Mediator E: Effect modifier
IV: Instrumental variable

Mediator

E

Many caveats with temporal data (eg health records), see [Doutreligne... 2023]
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Prediction
to support decision

Contrast predictions
of potential outcomes

best causal inference
, best usual predictor

[Doutreligne and Varoquaux 2023]

Don’t predict from
consequences of intervention

G Varoquaux 35



Data may not reflect application

It’s not a question of best predicting y given X

Survival: individuals not observed long enough
Causality: observed only one potential outcome per individual

More data, bigger learner won’t fix the problem
Need dedicated compensations

G Varoquaux 36



The soda team: Machine learning for health and social sciences
Machine learning for statistics
Causal inference, biases, missing values

Health and social sciences
Epidemiology, education, psychology

Tabular relational learning
Relational databases, data lakes

Data-science software
scikit-learn, joblib, skrub



Better machine learning for health

Health records, routine care = close to practice

Bridge the data to the application
The health outcome is the focus
But we seldom observe it without bias, censoring...
- Survival, for pronostic models
- Causality, for decision models

The data results from prior choices, existing practice

Better evaluation
Better metrics close to application
Account for variance in benchmarks

Avoid the race to scale @GaelVaroquaux
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