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Analysis of time-to-event outcome in randomized clinical trial

• Usually performed with a Cox model to provide a summary of the treatment effect

• Based on the proportional hazards (PH) assumption

• The presence of non-PH doubts the interpretation of a single reported hazard ratio

• This case of non-PH becomes more common with the development of
immunotherapies1 (delayed treatment effect)

1Lin et al. 2020.
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Restricted Mean Survival Time (RMST)

For T̃ the time-to-event variable and τ a pre-specified time of interest, the τ -RMST is2:

RMST(τ) = E(T̃ ∧ τ) =
∫ τ

0
S(t)dt

Royston and Parmar (2011) suggest using the difference in RMST (dRMST) between the two
arms:

• As an clinically meaningful measure of the treatment effect
• The primary measure when non-PH is observed
• A useful secondary measure when the PH assumption appears to be satisfied

2Irwin 1949.
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Real data example: Getug 15 trial

• PH assumption was rejected (p = 0.00022, Grambsch and Therneau test)
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Restricted Mean Survival Time estimation

One straightforward approach to estimate RMST is to numerically integrate the
Kaplan-Meier curve between 0 and τ

However, this approach does not allow for covariate adjustments, which is a major limitation
because omitting important covariate results in less precision3

3Karrison and Kocherginsky 2018.
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Frequentist methods to analyze RMST adjusted on covariates

One approach is to model the survival function and integrate it:

• Piecewise exponential model from Karrison (1987)
• Cox model stratified on the treatment from Zucker (1998)
↪→ Both complex to implement and limited

A more natural approach is to fit a linear model on the RMST directly:

• Using pseudo-observations from Andersen et al. (2004)
• With Inverse Probability of Censoring Weights (IPCW) from Tian et al. (2014)
↪→ Straightforward approaches
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Bayesian analysis

In rare diseases or precision medicine, small sample sizes make Bayesian methods attractive4:
• Naturally suitable for including prior information (historical data borrowing)
• Provide better interpretation

With small sample sizes, it is particularly needed to adjust the analysis on the prognostic
factors used for the randomization

4Lesaffre et al. 2020.
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Bayesian methods to analyze RMST

Bayesian research is limited to two recent nonparametric models on the survival function:
• Zhang and Yin (2023) assign a mixture of Dirichlet processes (MDP) prior
No covariates adjustment available

• Chen et al. (2023) overcome this limitation, with another dependent mixture model

Both methods require to model the survival function and are complex to implement
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Objective

We extended the analysis of pseudo-observations in the Bayesian framework to provide a
straightforward RMST estimation adjusted on covariates
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Pseudo-observations definition

Following Andersen et al. (2004), the i-th pseudo-observation is computed as:

yτ,i = n
∫ τ

0
Ŝ(t)dt− (n− 1)

∫ τ

0
Ŝ−i(t)dt

where

• Ŝ(t): Kaplan-Meier (KM) estimator at time t of survival probability
• Ŝ−i(t): KM estimator when eliminated i-th individual from the data set

Pseudo-observations can be interpreted as the contribution of one individual to the overall
estimate.
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Regression model

• Considering the following regression model on the RMST directly:

µi = E(T̃i ∧ τ |Ai,Zi) = α+ δAi + β1Zi1 + · · ·+ βPZiP

where A is the treatment variable, Z = (Z1, . . . ,ZP)T other variables and
β = (α, δ, β1, . . . , βP)T the vector of unknown parameters

• The regression coefficient, δ, can be interpreted as the dRMST between the two arms
• Assuming completely independent censoring, Overgaard et al. (2017) demonstrate
the asymptotic proprieties of pseudo-observations

E(yτ,i|Ai,Zi) ≈ E(T̃i ∧ τ |Ai,Zi)

=⇒ Pseudo-observations are analyzed as an outcome of a generalized linear model
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Pseudo-observations analysis

In the frequentist framework:

• Using the Generalized Estimating Equations5 (GEE)
• GEE is a marginal approach that does not require specifying the full distribution
• Only (here) the first moment is specified

In the Bayesian framework:

• Using the Bayesian Generalized Method of Moments6 (GMM)
• Bayesian GMM can be seen as the Bayesian counterpart of GEE
• Only the mean is specified through the use of a pseudo-likelihood

5Liang and Zeger 1986.
6Yin 2009.
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Bayesian generalized method of moments

• A score vector is defined as

Un(β) =
1
n

n∑
i=1
ui(β)

where ui(β) = ∂µi
∂β (yτ,i − µi)

• And a quadratic inference function7 is defined using the score vector

Qn(β) = UTn (β)Σ−1
n (β)Un(β)

with Σn(β) = 1
n2
∑n
i=1 ui(β)uTi (β)− 1

nUn(β)UTn (β) a (P+ 2)× (P+ 2) matrix
7Qu et al. 2000.
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Bayesian generalized method of moments

• By the Central Limit Theorem
• Un(β) d−→

n→+∞
N(0,Σ(β)), where Σ(β) = lim

n→+∞
(Σn(β))

• Qn(β) d−→
n→+∞

χ2P+2

• A chi-squared test can be defined8, analog to the usual likelihood ratio test, where
Qn(β) behaves like −2 log L(y|β)

• GMM approximates the likelihood for selected moments of the data without
specifying the full likelihood9

8Hansen 1982.
9Chernozhukov and Hong 2003.
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Bayesian generalized method of moments

• The pseudo-likelihood L̃(β|yτ ) is defined as

L̃(β|yτ ) ∝ exp{−12Qn(β)}

∝ exp{−12U
T
n (β)Σ

−1
n (β)Un(β)}

• The posterior probability is estimated as

p(β|yτ ) ∝ L̃(β|yτ )p(β)
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Simulation study

• Two-arm randomized clinical trials (experimental vs control)

• Event times ∼ Weibull distribution
• Independently,

• Censoring times ∼ Uniform distribution
• Administrative censoring at 8 years

↪→ ≈ 30% of censoring for all scenarios

• Sample sizes: 50, 100, 200, 500

• τ = 5 years
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Simulation study

5 scenarios: PH (scenario 1), non-PH: early effect (scenarios 2 and 4), delayed effect (scenarios 3
and 5), with uniform covariate (scenario 4), or normal and Bernoulli covariates (scenario 5)
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Simulation study

Performance metrics:
Bias, average standard error (ASE), root mean square error (RMSE), and 95% coverage rate
estimated for 1000 replicates
Benchmark methods:
• KM estimator
• Stratified Cox model from Zucker (1998)
• GEE model on pseudo-observations from Andersen et al. (2004)
• IPCW model from Tian et al. (2014)
• Bayesian nonparametric model from Zhang and Yin (2023)

Bayesian GMM:
NUTS algorithm in Stan
• chains = 3, burn-in = 1000, iteration = 2000, priors: β ∼ N(µ = 0, σ2 = 10)
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Results without covariates adjustment: scenarios 1-3 (n = 200)
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The Bayesian GMM gave valid estimations of the dRMST, with similar performances compared to the
other approaches
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Model misspecification: omitting prognostic variables (scenario 4: early effect)

n Methods Adjustment variable Bias ASE1 RMSE2 95% coverage rate

200 Frequentist
KM estimator - -0.0056 0.257 0.266 93.8
Zucker (1998) - -0.0104 0.258 0.264 93.8
Zucker (1998) Z1 -0.0133 0.239 0.243 93.9
Andersen et al. (2004) - -0.0056 0.258 0.266 93.8
Andersen et al. (2004) Z1 -0.0088 0.246 0.251 93.9

Bayesian
Zhang and Yin (2023) - -0.0058 0.256 0.266 93.8
GMM - -0.0070 0.259 0.263 94.5
GMM Z1 -0.0033 0.250 0.249 94.6

1 ASE = Average Standard Error, 2 RMSE = Root Mean Square Error
Prognostic variable Z1 ∼ U([0, 2])
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Model misspecification: omitting prognostic variables

Other settings:

• Omitting prognostic variables also results in less precision with a delayed treatment effect
(scenario 5)

• Similar results were observed for other sample sizes (n = 50, 100, 500)
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Model misspecification: adding unrelated variables (scenario 4: early effect)

n Methods Adjustment variable Bias ASE1 RMSE2 95% coverage rate

200 Frequentist
Zucker (1998) - -0.0104 0.258 0.264 93.8
Zucker (1998) Z1 -0.0133 0.239 0.243 93.9
Zucker (1998) Z1, X1 -0.0128 0.239 0.245 93.9
Zucker (1998) Z1, X1, X2, X3 -0.0117 0.239 0.248 93.8
Andersen et al. (2004) - -0.0056 0.258 0.266 93.8
Andersen et al. (2004) Z1 -0.0088 0.246 0.251 93.9
Andersen et al. (2004) Z1, X1 -0.0074 0.246 0.251 93.9
Andersen et al. (2004) Z1, X1, X2, X3 -0.0068 0.246 0.254 93.7

Bayesian
GMM - -0.0070 0.259 0.263 94.5
GMM Z1 -0.0033 0.250 0.249 94.6
GMM Z1, X1 -0.0014 0.253 0.249 94.3
GMM Z1, X1, X2, X3 -0.0008 0.261 0.252 95.3

1 ASE = Average Standard Error, 2 RMSE = Root Mean Square Error
Prognostic variable Z1 ∼ U([0, 2]), other variable X1 ∼ N(0, 1), X2 ∼ B(0.5), X3 ∼ U([0, 2])Orsini L. Bayesian analysis of restricted mean survival time adjusted on covariates using pseudo-observations 22



Model misspecification: adding unrelated variables

Other settings:

• No bias nor variance inflation was observed for the frequentist approaches with a delayed
treatment effect (scenario 5)

• Similar results were observed for other sample sizes for the frequentist approaches
(n = 50, 100, 500)

• Higher variance for the Bayesian GMM with n = 50 and 1-3 unrelated covariates
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Application to the Getug 15 trial

Phase 3 randomized clinical trial: comparing an androgen-deprivation therapy alone or
with docetaxel in non-castrate metastatic prostate cancer (n = 384, 25% of censoring)

Outcome of interest: Prostate-Specific Antigen (PSA) progression-free survival

Covariates adjustment:

• Gleason score (< 8 vs. ≥ 8 )
• European Cooperative Oncology Group performance status (0 vs. 1− 2)
• Concentration of alkaline phosphatase (Normal vs. Abnormal)
• Presence of bone metastases (Yes vs. No)
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Estimation of the difference of 5-RMST between the two treatment groups
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Getug 15: 5-RMST analysis with the Bayesian GMM

Quantiles

Covariate β̂ SD 2.5% 25% 50% 75% 97.5%

Intercept 5.63 0.55 4.53 5.27 5.63 5.99 6.73
Gleason score -0.19 0.18 -0.53 -0.30 -0.19 -0.07 0.15
ECOG performance status -0.55 0.18 -0.90 -0.68 -0.56 -0.44 -0.21
Alkaline phosphatase concentration -1.25 0.18 -1.60 -1.37 -1.24 -1.12 -0.89
Presence of bone metastases -0.49 0.27 -1.01 -0.68 -0.49 -0.31 0.04
Treatment 0.58 0.17 0.25 0.46 0.58 0.69 0.91
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Getug 15: Estimation of the difference of 5-RMST with the Bayesian GMM
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• The mean of the posterior samples is 0.58 year (95% credible interval: 0.24-0.92).
On average, receiving docetaxel in addition to ADT increases the lifetime without PSA
progression during the next 5 years by 0.58 year compared to receiving ADT alone.
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Getug 15: Estimation of the difference of 5-RMST with the Bayesian GMM
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• P(dRMST(5) ≥ 3 months ) = 0.97
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Discussion

We propose a Bayesian approach for analyzing RMST adjusted on covariates:

• Combining the flexibility of pseudo-observations:
• To fit a straightforward linear model, without specifying any model on the survival function
• To estimate not only the treatment effect but also the covariate effects

• With the Bayesian GMM:
• To allow for including prior information in the analysis
• To benefit from the advantages of the Bayesian interpretation

Perspectives:

• Extend this approach to the joint analysis of RMST at multiple time points
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