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Outline

1 Investigating Stem Cell Differentiation Using Single-Cell
RNA-Seq

2 Exploratory Data Analysis: EDASeq

3 Normalization: scone

4 Sparse Contrastive Principal Component Analysis: scPCA

5 Expression Quantitation: ZINB-WaVE

6 Cluster Analysis

7 Inference of Cell Lineages and Pseudotimes: Slingshot

8 Trajectory-Based Differential Expression: tradeSeq

9 Inference of Transcription Factor Activity: transfactor

10 Trajectory Inference Across Multiple Conditions: condiments
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Olfactory Stem Cells and Neural Regeneration

Stem cell differentiation in the mouse olfactory epithelium.
(Fletcher et al., 2017; Gadye et al., 2017)

• Goal: Elucidate the molecular and cellular mechanisms
underlying stem cell-mediated development and regeneration
in the olfactory epithelium’s (OE) neurogenic stem cell niche.

• Potential applications: Prevention and treatment of neural
tissue damage and degeneration, e.g., Alzheimer’s disease.

• Focus on the differentiation of horizontal basal cells (HBC), a
type of adult tissue stem cells.

• The p63 protein (tumor protein p63, TP63) promotes
self-renewal of HBCs by blocking differentiation. When p63 is
down-regulated, differentiation proceeds at the expense of
self-renewal. Thus, p63 can be viewed as a “molecular
switch” that decides between the alternate stem cell fates of
self-renewal and differentiation.

5 / 59



Olfactory Stem Cells and Neural Regeneration

• OE p63 dataset. [Fluidigm C1, ∼ 700 cells; Fletcher et al.
(2017)]
Investigate the differentiation of HBCs, using single-cell
transcriptome sequencing (scRNA-Seq) to measure
genome-wide expression levels at the resolution of single cells
in wild-type (WT) and p63 knock-out (KO) mice, at five
timepoints following tamoxifen treatment.

• OE injury response dataset. [10X Genomics Chromium v2, ∼
25K cells; In preparation]
Investigate the transcriptional response to injury, using
scRNA-Seq to measure gene expression in the OE of adult
mice treated with methimazole, at 24h, 48h, 96h, 7d, and 14d
after injury.
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Olfactory Stem Cells and Neural Regeneration

Figure 1: Mouse olfactory epithelium.
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Olfactory Stem Cells and Neural Regeneration

Figure 2: Olfactory epithelium cell types. Sus: sustentacular cell, ORN:
olfactory receptor neuron, GBC: globose basal cell, HBC: horizontal basal
cell, OEC: olfactory ensheathing cell, BG: Bowman gland.

8 / 59



Olfactory Stem Cells and Neural Regeneration

Figure 3: Singe-cell RNA-Seq.
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Single-Cell RNA-Seq Workflow

• Exploratory data analysis and quality assessment/control:
EDASeq (Perraudeau et al., 2017).
Summarize and visualize the data to identify the main
features as well as problems with these data.
▶ Look at data to avoid “garbage in, garbage out” (GIGO).

• Normalization: RUVSeq, scone (Cole et al., 2019; Risso et al.,
2011, 2014a,b; Vallejos et al., 2017).
Adjust read counts to ensure that observed differences in
expression measures between genes or samples reflect
biological effects of interest and not unwanted technical
effects.
▶ Normalization procedures: Global scaling, quantile matching,

regression on known factors of unwanted variation
(supervised), regression on unknown factors of unwanted
variation (unsupervised, RUV).

▶ Normalization performance assessment and selection.
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Single-Cell RNA-Seq Workflow

• Dimensionality reduction: scPCA (Boileau et al., 2020a,b).
Sparse contrastive principal component analysis (scPCA) to
remove unwanted variation and extract sparse, stable,
interpretable, and relevant biological signal.

• Expression quantitation: zinbwave (Risso et al., 2018a; Van
den Berge et al., 2018).
Zero-inflated negative binomial-based wanted variation
extraction method (ZINB-WaVE):
▶ account for zero inflation and over-dispersion;
▶ accommodate experimental design (e.g., batch, nesting);
▶ adjust for known and unknown factors of unwanted variation

(normalization);
▶ quantify biological effects of interest;
▶ perform dimensionality reduction;
▶ provide weights to be used in standard bulk RNA-Seq

differential expression (DE) methods (e.g., edgeR, DESeq2,
and limma).
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Single-Cell RNA-Seq Workflow

• Resampling-based sequential ensemble clustering (RSEC):
clusterExperiment (Risso et al., 2018b).
General and flexible framework for applying and comparing a
variety of different clustering algorithms and associated tuning
parameters and aggregating multiple candidate clusterings
into a stable consensus clustering.

• Cluster merging procedure to navigate the trade-off between
cluster resolution and replicability across datasets: Dune
(Roux de Bézieux et al., 2020, 2023).
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Single-Cell RNA-Seq Workflow

• Inference of cell lineages and pseudotimes: slingshot (Street
et al., 2018).
▶ Infer the global lineage structure (i.e., the number of lineages

and where they branch) using a cluster-based minimum
spanning tree (MST).

▶ Infer cell pseudotimes along each lineage using simultaneous
principal curves.

▶ Can identify any number of lineages.
▶ May incorporate subject-matter knowledge to supervise parts

of the inference process (e.g., known terminal states).

• Trajectory-based differential expression: tradeSeq (Van den
Berge et al., 2020).
Identify differentially expressed (DE) genes, both within- and
between-lineages.
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Single-Cell RNA-Seq Workflow

▶ Rely on a negative binomial (NB) generalized additive model
(GAM) to exploit the continuous resolution provided by the
pseudotimes from trajectory inference (vs. DE between
discrete cell clusters).

▶ Identify different types of DE patterns based on contrasts for
the NB-GAM coefficients.

• Trajectory inference across multiple conditions: condiments
(Roux de Bézieux et al., 2024).
Identification of differences between conditions (e.g.,
wild-type/knock-out) at the trajectory (differential topology),
cell population (differential progression and fate selection),
and gene (differential expression) levels.

• Inference of transcription factor activity: transfactor (Van den
Berge et al., In preparation).
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Single-Cell RNA-Seq Workflow

▶ Deconvolve transcription factor-specific gene expression from
overall gene expression by leveraging gene regulatory network
(GRN).

▶ Investigate regulatory differences in TF activity within and
between lineages in a trajectory.

• Software. The above methods are implemented in open-source
R (www.r-project.org) software packages released through
the Bioconductor Project (www.bioconductor.org).
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Sample-Level QC
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Figure 4: Sample-level QC: OE p63 dataset. Boxplots of QC measures,
by batch.
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Sample-Level QC
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Gene-Level Counts
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Normalization: Motivation

• The goal of normalization is to adjust read counts for
gene-level (e.g., length, GC-content) and sample-level (e.g.,
sequencing depth, batch, QC) unwanted technical effects, in
order to allow meaningful comparison of expression measures
between genes or samples.

• Normalization is essential before any clustering or differential
expression analysis, to ensure that observed differences in
expression measures between genes or samples reflect
biological effects of interest and not technical artifacts.

• Normalization is even more important for single-cell RNA-Seq
than bulk RNA-Seq due to increased technical noise and zero
inflation.
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Normalization: Motivation

• Does normalization matter? Yes!
The choice of normalization method can have a greater
impact on the results than the choice of downstream method
for inferring differential expression (Bullard et al., 2010).

• Which method is best? Not obvious, depends on dataset.
Need a data-driven approach and controls for selecting a
suitable normalization procedure.
−→ scone.
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Normalization: scone

Cole et al. (2019). General framework for the normalization of
scRNA-Seq (and other) data, scone.

• Implementation of a range of normalization methods.
▶ Global-scaling, e.g., DESeq, TMM, upper-quartile (UQ).
▶ Full-quantile (FQ).
▶ Regression on known factors of unwanted variation

(supervised): E.g. QC PC, batch.
▶ Regression on unknown factors of unwanted variation

(unsupervised): Remove unwanted variation (RUV) (Risso
et al., 2014a,b).

• Normalization performance metrics.
▶ Clustering of samples according to factors of wanted and

unwanted variation.
▶ Association of expression measures with factors of wanted and

unwanted variation.
▶ Between-sample distribution of expression measures.
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Normalization: scone

• Numerical and graphical summaries of normalized read counts
and performance metrics.

• Shiny app.

• We’ve used the scone framework for the normalization other
types of -omic data, including adductomics and metabolomics
data.

• Bioconductor R package scone:
www.bioconductor.org/packages/release/bioc/html/scone.html.
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Normalization: scone

Application to OE p63 dataset.

• Apply and evaluate 172 normalization procedures using main
scone function.
▶ scaling method: None, DESeq, TMM, FQ.
▶ uv factors: None; RUVg k = 1, · · · , 5; QC PC k = 1, · · · , 5.
▶ adjust biology: Yes/no.
▶ adjust batch: Yes/no.

• Among best-performing methods:
none,fq,qc k=4,bio,no batch,
none,fq,qc k=2,no bio,no batch.
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Normalization: scone
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Normalization: scone
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Normalization: scone
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Inference of Cell Lineages and Pseudotimes: Slingshot

• We have developed slingshot as a flexible and robust
framework for inferring cell lineages and pseudotimes (Street
et al., 2018).

• Slingshot allows the identification of any number of novel
lineages, with the option of incorporating subject-matter
knowledge to supervise parts of the inference process (e.g.,
known terminal states).

• The method comprises two main steps:

1 the inference of the global lineage structure (i.e., the number
of lineages and where they branch) using a cluster-based
minimum spanning tree (MST);

2 the inference of cell pseudotimes along each lineage using a
novel method of simultaneous principal curves.

• Bioconductor R package slingshot:
www.bioconductor.org/packages/release/bioc/html/slingshot.html.
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Inference of Cell Lineages and Pseudotimes: Slingshot

Figure 10: slingshot: Main steps.
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Inference of Cell Lineages and Pseudotimes: Slingshot

Application to OE p63 dataset.

• Cell clusters. We use the RSEC clustering to define states in
the differentiation of HBCs to neuronal and sustentacular
cells.
▶ horizontal basal cells (HBC),
▶ globose basal cells (GBC),
▶ microvillous cells (MV),
▶ immediate neuronal precursors (INP),
▶ immature and mature olfactory sensory neurons (iOSN,

mOSN),
▶ immature and mature sustentacular cells (iSus, mSus).
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Inference of Cell Lineages and Pseudotimes: Slingshot

• Leaf-node supervision. Known terminal clusters were provided
to Slingshot: Mature sustentacular cells (mSus), microvillous
cells (MV), and mature olfactory sensory neurons (mOSN)
(only the first had an effect).
Without leaf-node supervision, we draw the (known) false
conclusion that sustentacular cells may develop into GBC.

• Slingshot identifies three lineages:
HBC–mSus,
HBC–GBC–MV,
HBC–GBC–mOSN.

30 / 59



Inference of Cell Lineages and Pseudotimes: Slingshot
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Figure 11: slingshot: OE p63 dataset. Step 1: MST on cell clusters. Step
2: Simultaneous principal curves.
Slingshot identifies three lineages: HBC–mSus, HBC–GBC–MV,
HBC–GBC–mOSN.
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Inference of Cell Lineages and Pseudotimes: Slingshot

Application to OE injury response dataset.

• Cell clusters. We use the clustering from Brann et al. (2020)
to define states in the differentiation of HBCs to neuronal and
sustentacular cells.

• Leaf-node supervision. Known terminal clusters were provided
to Slingshot: Sus, mOSN, and rHBC.

• Upon injury of the OE, HBCs are activated in order to rebuild
the tissue and Slingshot identifies three lineages:
HBC∗–Sus,
HBC∗–GBC–iOSN–mOSN,
HBC∗–rHBC.
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Inference of Cell Lineages and Pseudotimes: Slingshot

Figure 12: slingshot: OE injury response dataset.
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Trajectory-Based Differential Expression: tradeSeq

• Downstream of trajectory inference, it is important to identify
genes that are associated with the lineages, in order to gain
insight into the biological processes underlying differentiation.

• Current approaches typically assess differential expression
between (discrete) cell clusters, which fails to exploit the
continuous resolution of the trajectory.

• In Van den Berge et al. (2020), we introduce tradeSeq, a
negative binomial generalized additive model (NB-GAM)
framework, that allows flexible inference of
▶ within-lineage differential expression, by detecting associations

between gene expression and pseudotime over an entire lineage
or between points/regions within the lineage;

▶ between-lineage differential expression, by comparing gene
expression between lineages over the entire lineages or at
specific points/regions.
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Trajectory-Based Differential Expression: tradeSeq

• Different types of DE patterns are identified by based on
linear combinations of the NB-GAM coefficients.

• The NB-GAM can also be used to cluster genes according to
their expression patterns.

• Bioconductor R package tradeSeq:
www.bioconductor.org/packages/release/bioc/html/tradeSeq.html

(GAM fit using Simon Wood’s R package mgcv).
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Trajectory-Based Differential Expression: tradeSeq

Figure 13: tradeSeq: OE injury response dataset. Use NB-GAM to relate
gene expression to pseudotime for each lineage and to detect DE both
within and between lineages.
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Trajectory-Based Differential Expression: tradeSeq

Figure 14: tradeSeq: NB-GAM. Gene-wise NB-GAM relates gene
expression measures Y to pseudotimes T ; different types of DE patterns
are identified based on contrast for coefficients β.
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Trajectory-Based Differential Expression: tradeSeq

Figure 15: tradeSeq: Overview of functionality.
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Trajectory-Based Differential Expression: tradeSeq

Figure 16: tradeSeq: OE p63 dataset. Left: Top 200 DE genes within
neuronal lineage (associationTest). Right: Four DE TFs between lineages
(earlyDETest).
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Trajectory-Based Differential Expression: tradeSeq

OE p63 dataset.

• A heatmap of the top 200 DE genes for the neuronal lineage
reveals five gene clusters, each with a different region of
activity during the developmental process (associationTest).

• Four of the transcription factors (TF) that are DE between
lineages are involved in epithelial cell differentiation
(earlyDETest).

• tradeSeq uncovers transcriptional programs that are active in
each of the three lineages, identifying both known and novel
marker genes.

• Sustentacular cells are produced via direct conversion of HCB
(without cell division). By contrast, microvillous and neuronal
cells are produced via an intermediate, proliferative state
(GBC).
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Trajectory-Based Differential Expression: tradeSeq

Figure 17: tradeSeq: OE injury response dataset. First derivatives of
NB-GAM fits for each lineage. Purple: Neuronal, Green: Sus, Yellow:
rHBC.
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Trajectory-Based Differential Expression: tradeSeq

Figure 18: tradeSeq: OE injury response dataset, TF activity cascade for
neuronal lineage. Heatmap of tradeSeq fitted values, cells binned by
pseudotime and most abundant cell type indicated in color bar. Left: TFs
ordered according to pseudotime of most significant peak. Right:
Hierarchical clustering of TFs.
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Trajectory-Based Differential Expression: tradeSeq

OE injury response dataset.

• Using the first derivatives of the NB-GAM, we identified
transcription factor activity cascades in each lineage,
highlighting the moment at which TFs are most active.

• This allows a grouping of TFs based on their sequential
activation profile and the functional annotation of the
biological processes that are active along development.

• Gene set enrichment analysis of the TF clusters indicates the
processes activated by the TFs at various stages of
differentiation.
▶ Neuronal lineage: TFs involved in stress response at the early

HBC* stage, then cell cycle regulation and neuron
differentiation during the GBC and iOSN stages, and finally
processes such as dendrite development, cell projection, and
calcium-mediated signaling at the iOSN and mOSN stages.
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Trajectory-Based Differential Expression: tradeSeq

▶ Sustentacular lineage: TFs involved in cell growth and the
regulation of proliferation early in lineage, then regulation of
differentiation later on.

▶ rHBC lineage: TFs involved in initial stress response, followed
by neural precursor cell proliferation and circulatory system
development.

• Overall, Slingshot and subsequent DE analysis with tradeSeq
revealed that olfactory stem cells use divergent strategies to
generate the major cell types of the epithelium. There are
numerous step-like transitions in the neuronal lineage, but
fewer gradual changes in the sustentacular lineage.
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Inference of Transcription Factor Activity: transfactor

• We would like to examine transcription factor (TF) activity to
gain insight into regulatory differences underlying differential
gene expression along a trajectory.

• Why not use transcript abundance for the TF gene to directly
measure the TF’s activity?
▶ While TF protein abundance is typically high in single cells, the

mRNA abundance of the corresponding TF gene is often low.
▶ TFs that are highly active, i.e., producing many mRNA

molecules from their downstream target genes, may have genes
with relatively low mRNA abundances.

• Gene regulation by transcription factors may be summarized
by a gene regulatory network (GRN), with
▶ nodes representing genes and TFs,
▶ edges representing regulatory interactions between genes and

TFs (induction or repression).
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Inference of Transcription Factor Activity: transfactor

• We have developed an approach to leverage GRNs to infer
transcription factor activity.

• The paradigm shift from investigating differences in gene
expression to investigating regulatory differences in TF activity
provides a more parsimonious way to interpret gene expression
and allows the identification of a limited number of TFs that
are driving gene expression differences.
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Inference of Transcription Factor Activity: transfactor

• Define transcription factor activity based on the number of
mRNA molecules produced across all the genes that a TF is
regulating.

• Use a hierarchical Poisson model for the number of transcripts
produced by each TF for a given gene, where prior information
on the GRN may be incorporated via a Dirichlet distribution.

• Use the EM algorithm to fit the model and deconvolve
TF-specific gene expression from overall gene expression for
each gene.
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Inference of Transcription Factor Activity: transfactor

• Assess differences in TF activity within and between lineages
in a trajectory using tradeSeq.

• Applying tradeSeq to TF activity estimates for the OE injury
response dataset allowed us to identify TFs involved in
neurogenesis.
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Inference of Transcription Factor Activity: transfactor

Figure 19: transfactor: OE injury response dataset. Left: UMAP
representation of gene expression in neuronal lineage. Right: Heatmap of
TF activity for differentially active TFs in neuronal lineage (tradeSeq
associationTest), cells binned by pseudotime and most abundant cell type
indicated in color bar.
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Trajectory-Based Differential Transcription Factor Activity:
transfactor

Figure 20: transfactor: OE injury response dataset. TF activity stratified
by pseudotime for 9 TFs found to be most differentially active in the
neuronal lineage (tradeSeq associationTest).
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Software

• R Project: www.r-project.org.

• Bioconductor Project: www.bioconductor.org.

• clusterExperiment: Resampling-based sequential ensemble
clustering (RSEC).
www.bioconductor.org/packages/release/bioc/html/clusterExperiment.html.

• Dune: Cluster merging procedure to navigate the
resolution-replicability trade-off.
www.bioconductor.org/packages/release/bioc/html/Dune.html.

• EDASeq: Exploratory data analysis and normalization for
RNA-Seq.
www.bioconductor.org/packages/release/bioc/html/EDASeq.html.

• RUVSeq: Remove unwanted variation for RNA-Seq.
www.bioconductor.org/packages/release/bioc/html/RUVSeq.html.
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Software

• scone: Normalization procedures and performance assessment.
www.bioconductor.org/packages/release/bioc/html/scone.html.

• scPCA: Sparse contrastive principal component analysis.
www.bioconductor.org/packages/release/bioc/html/scPCA.html.

• slingshot: Cell lineage and pseudotime inference.
www.bioconductor.org/packages/release/bioc/html/slingshot.html.

• tradeSeq: Trajectory-based differential expression.
www.bioconductor.org/packages/release/bioc/html/tradeSeq.html.

• condiments: Trajectory inference across multiple condition.
www.bioconductor.org/packages/release/bioc/html/condiments.html.

• zinbwave: Zero-inflated negative binomial-based wanted
variation extraction (ZINB-WaVE).
www.bioconductor.org/packages/release/bioc/html/zinbwave.html.

• Other packages listed at: www.bioconductor.org.
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Software

• F1000 Bioconductor workflow (Perraudeau et al., 2017):
f1000research.com/articles/6-1158/.

See www.stat.berkeley.edu/~sandrine for publications,
presentations, and software.
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