

Generalized Pairwise Comparisons: a statistical method for patient-centric medicine

Marc Buyse, ScD IDDI and U Hasselt, Belgium

QuanTIM Webinar

17 February 2023

Agenda

- Theory
 - Generalized Pairwise Comparisons
 - Net Treatment Benefit
- Applications
 - Augmenting power *and* clinical relevance
 - Benefit / risk analyses
 - Multiple testing procedures
- Conclusions

Theory

Wilcoxon rank-sum test

Wilcoxon rank-sum test

- 1. Order the (n + m) elements of $X \cup Y$
- 2. Let R_i be the rank order of the i^{th} element
- 3. For groups of tied values, assign a rank equal to the midpoint of the unadjusted ranks
- 4. Calculate $U = \sum_{i=1}^{n} R_i$, the sum of ranks of the elements of **X**
- 5. The statistic U has a known distribution under H_0

Mann-Whitney test

1. Perform pairwise comparisons between all elements of *X* and *Y*

2. Calculate
$$u_{ij} = \begin{cases} 1 \text{ if } X_i > Y_j \\ 0 \text{ if } X_i < Y_j \\ 1/2 \text{ if } X_i = Y_j \end{cases}$$

3. The statistic $U = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}$ has a known distribution under H_0

Generalized Pairwise Comparisons (GPC)

1. Perform pairwise comparisons between all elements of *X* and *Y*

2. Calculate
$$u_{ij} = \begin{cases} +1 \text{ if } X_i > Y_j \\ -1 \text{ if } X_i < Y_j \\ 0 \text{ if } X_i \sim Y_j \end{cases}$$

3. The statistic $U = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}$ has a known distribution under H_0

where ≽ stands for "better" (win) ≺ stands for "worse" (loss) ∼ stands for "similar" (tie) or "unclassified" (?)

Buyse. Stat Med 2010;29:3245. Pocock et al. Eur Heart J 2012;33:176.

GPC – Outcome of any type

" X_i better than Y_j " (wins):

- For ordered outcomes, with larger values preferable: $X_i > Y_j$
- For binary outcomes, with 1 denoting success and 0 failure, X_i > Y_j
- For time-to-event outcomes, with larger values preferable, X_i > Y_j unless
 Y_j censored
- For all outcome types, arbitrary definition

GPC – clinical threshold

1. Perform pairwise comparisons between all elements of ordered outcomes *X* and *Y*

2. Calculate
$$u_{ij} = \begin{cases} +1 \text{ if } X_i > Y_j + \delta \\ -1 \text{ if } X_i + \delta < Y_j \\ 0 \text{ otherwise} \end{cases}$$

3. The statistic $U = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}$ has a known distribution under H_0

GPC – multiple weighted outcomes

1. Perform pairwise comparisons between all elements of *X* and *Y*

2. Calculate
$$u_{ij}(k) = \begin{cases} +1 \ if X_i(k) > Y_j(k) \\ -1 \ if X_i(k) < Y_j(k) \\ 0 \ otherwise \end{cases}$$

3. The statistic $U = \frac{1}{m \cdot n} \sum_{k=1}^{K} \sum_{i=1}^{m} \sum_{j=1}^{n} w(k) u_{ij}(k)$ has a known distribution under H_0

Note: weights w(k) are arbitrary, usually chosen so that $\sum_{k=1}^{K} w(k) = 1$

GPC – multiple prioritized outcomes

Outcome of 1 st priority	Outcome of 2 nd priority	Overall
Win	-	Win
Loss	-	Loss
Tie or ?	Win	Win
	Loss	Loss
	Tie or ?	Tie or ?

Note: priorities may be patient-centric

Net Treatment Benefit (*NTB*)

The Net Treatment Benefit (*NTB*) is a *U*-statistic

$$U = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} u_{ij}$$

$$= \frac{\#Wins - \#Losses}{\#Pairs}$$

Hoeffding. Ann Math Stat 1948;19:293

Measures of treatment effect

*Finkelstein-Schoenfeld statistic*¹=#Wins - #Losses

 $NTB^2 = \frac{\#Wins - \#Losses}{\#Pairs}$

Win Ratio
$${}^{3} = \frac{\#Wins}{\#Losses}$$

Win Odds
$$^{4,5} = \frac{\#Wins + \frac{1}{2}\#(Ties \ or \ ?)}{\#Losses + \frac{1}{2}\#(Ties \ or \ ?)}$$

Note

$$NTB = \frac{Win \ Odds - 1}{Win \ Odds + 1}$$

¹ Finkelstein & Schoenfeld. Stat Med 1999;18:1341. ² Buyse. Stat Med 2010;29:3245. ³ Pocock et al. Eur Heart J 2012;33:176. ⁴ Dong et al. Stat Biopharm Res 2020;12:99. ⁵ Brunner et al. Stat Med 2021;40:3367.

Measures of treatment effect

$$NTB = \frac{23-9}{36} = 0.39$$

Win Ratio = $\frac{23}{9} = 2.6$
Win Odds = $\frac{25}{11} = 2.3$

NTB – interpretation

NTB ranges from -1 to +1, with 0 indicating no overall treatment effect

NTB = P(X > Y) - P(Y > X)

NTB is the *net* probability of a better outcome in one treatment group than in the other

More precisely, *NTB* is the probability that a patient taken at random in the treatment group has a better outcome than a patient taken at random in the control group, minus the probability of the opposite situation.

NTB – relationships

NTB is a linear transformation of the probabilistic index PI

$$NTB = 2 \cdot PI - 1$$

where

$$PI = P(X > Y) + \frac{1}{2}P(X = Y)$$

PI ranges from 0 to 1, with ½ indicating no overall treatment effect

PI is closely related to the proportion of similar responses ¹, the concordance index ² the probability of overlap ³, and the area under the ROC curve ⁴.

¹ Rom & Wang. Stat Med 1996;15:1489.
 ² Harrell. Regression Model Strategies, Springer 2001.
 ³ Stine & Heyse. Stat Med 2001;20:215.
 ⁴ Brumback et al. Stat Med 2006;25:575.

NTB – inference and estimation

For testing H_0 : NTB = 0, estimation of NTB and confidence limits of NTB^{-1} :

- Exact permutation and bootstrap distribution of the NTB statistic^{2,3}
- Re-randomization tests ⁴
- Bootstrapping for confidence intervals ⁵
- Asymptotic distribution of U-statistics ⁶⁻⁸

¹ Verbeeck et al. J Biopharm Stat 2020;30:765. ² Finkelstein & Schoenfeld. Stat Med 1999;18:1341.
 ³ Anderson & Verbeeck. <u>https://arxiv.org/pdf/1901.10928.pdf</u>, 2019. ⁴ Buyse. Stat Med 2010;29:3245.
 ⁵ Pocock et al. Eur Heart J 2012;33:176. ⁶ Dong et al. Pharm Stat 2016;15:430.
 ⁷ Bebu & Lachin. Biostatistics 2016;17:178. ⁸ Ramchandani et al. Biometrics 2016;72:926

NTB – adjustment for censoring

NTB (Gehan Wilcoxon test) is biased in the presence of censoring ¹. The bias can be removed through different approaches ²

- Naïve, using the proportion of informative pairs ^{3,4}
- Imputations using the survival distribution ^{1,5,6}
- Inverse probability of censoring weighting ^{7,8}

¹ Efron. Proc 5th Berkeley Symp 1967;4:831. ² Deltuvaite-Thomas et al. Biometrical J 2022.
 ³ Harrell et al. J Am Med Ass 1982;247:2543. ⁴ Buyse. Clin Trials 2008;5:641.
 ⁵ Latta. Biometrika 1977;63:633. ⁶ Péron et al. Stat Meth Med Res 2016;27:1230.
 ⁷ Datta et al. Scand J Stat 2010;37:680. ⁸ Dong et al. Stat Biopharm Res 2020;30:882

Applications

- Patients with cancer treated aggressively may experience severe toxicities
 - WHO grade 3: severe
 - WHO grade 4: life-threatening
 - WHO grade 5: lethal
- The traditional primary endpoint for comparing an experimental treatment with a control is incidence of WHO grade 3 or worse toxicity
- The analysis should take multiple prioritized outcomes into account:
 - 1. Severity (lower WHO grade better)
 - 2. Duration of severe toxicity (shorter better)
 - 3. Time to onset (later better)

Placebo controlled trial of experimental treatment protecting against a specific toxicity

21

Placebo controlled trial of experimental treatment protecting against a specific toxicity

Placebo controlled trial of experimental treatment protecting against a specific toxicity

Placebo controlled trial of experimental treatment protecting against a specific toxicity

 Simple situation of binary efficacy outcome (1 = response, 0 = no response) and binary safety outcome (1 = no toxicity, 0 = toxicity)

Outcomes	Treatment	Control	Difference
Response rate (benefit)	0.5	0.2	0.3
Toxicity rate (risk)	0.6	0	0.6
Marginal benefit / risk difference			-0.3

- Naïve analysis suggests negative benefit / risk of -0.3
- What would GPC analysis show, assuming achievement of response is prefered to avoidance of toxicity?

Buyse et al. J Clin Epidemiol 2021;137:148

- *NTB* depends on the association (odds ratio, *OR*) between response and toxicity
 - If OR > 1, NTB > 0: patients who respond also have toxicity (*e.g.*, skin rash for inhibitors of the EGFR pathway)
 - If OR = 1, NTB = 0: response is independent of toxicity (*e.g.*, cardiac toxicities of anthracyclins)
 - If OR < 1, NTB < 0: patients who do not respond have toxicity (*e.g.*, toxicities to irinotecan in patients with enzyme deficiencies)

- *NTB* depends on the association (odds ratio, *OR*) between response and toxicity
 - If OR > 1, NTB > 0: patients who respond also have toxicity (*e.g.*, skin rash for inhibitors of the EGFR pathway)
 - If OR = 1, NTB = 0: response is independent of toxicity (*e.g.*, cardiac toxicities of anthracyclins)
 - If OR < 1, NTB < 0: patients who do not respond have toxicity (*e.g.*, toxicities to irinotecan in patients enzyme deficiencies)
- *NTB* would be quite different if avoidance of toxicity was prefered to achievement of response, allowing for patient-centric treatment choices

Multiple Testing Procedures

Assume several treatments are compared to a standard of care

Comparisons: A vs. C (Experimental 1, preferred) B vs. C (Experimental 2) A vs. B (Not powered)

Outcomes: PFS (« Primary ») OS (« Key secondary »)

Multiple Testing Procedures

Testing procedure with strict control of type I error rate

OS of the preferred experimental arm is tested at full level of significance (0.05) *only if PFS of the other (non preferred) experimental arm reaches statistical significance !*

Conclusions

GPC benefits

- Increases flexibility of analyses
- Incorporates multiple outcomes
- Incorporates thresholds of clinical relevance
- May increase power as compared with single outcome
- Can be adapted to individual patient preferences
- Provides unique measure of treatment effect that is meaningful to patients and caregivers

Questions / References

marc.buyse@iddi.com