

#### Aix-Marseille Université

Sciences économiques et sociales de la santé & traitement de l'information médicale January 20, 2023

## Aligning biomedical terminologies From lexical models to supervised learning

Olivier Bodenreider, MD, PhD
Senior Scientist



#### Disclaimer

The views and opinions expressed do not necessarily state or reflect those of the U.S. Government, and they may not be used for advertising or product endorsement purposes.

#### **Outline**

- ◆ Introduction to the UMLS Metathesaurus
- ◆ Lexical model of synonymy
- ◆ Supervised machine learning for synonymy prediction

# Introduction to the UMLS Metathesaurus

#### What does UMLS stand for?

- **♦** Unified
- **♦** Medical
- **♦** Language
- **♦** System



http://www.nlm.nih.gov/research/umls/

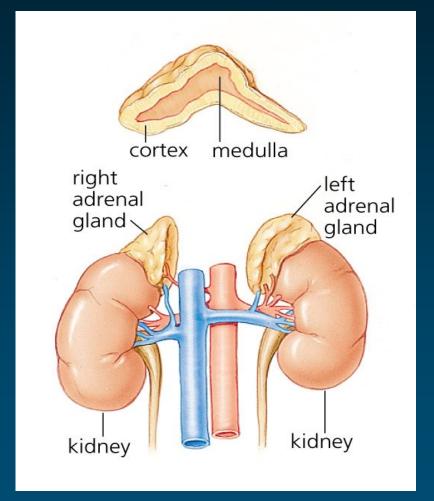
#### **Motivation**

- ◆ Started in 1986
- ◆ National Library of Medicine

- «[...] the UMLS project is an effort to overcome two significant barriers to effective retrieval of machine-readable information.
- The first is the variety of ways the same concepts are expressed in different machine-readable sources and by different people.
- The second is the distribution of useful information among many disparate databases and systems.»

#### **UMLS Metathesaurus**

(2021AA)


- ◆ 157 families of source vocabularies
  - Not counting 58 translations
- ◆ 25 languages
- ◆ Broad coverage of biomedicine
  - 12.5M names (normalized)
  - ~4.4M concepts
  - >10M relations
- Common presentation

## UMLS Metathesaurus

Overview through an example

#### Addison's disease

- ◆ Addison's disease is a rare endocrine disorder
- ◆ Addison's disease occurs when the adrenal glands do not produce enough of the hormone cortisol
- ◆ For this reason, the disease is sometimes called chronic adrenal insufficiency, or hypocortisolism



#### AD in medical vocabularies

- ◆ Synonyms: different terms
  - Addisonian syndrome
  - Bronzed disease
  - Melasma addisonii
  - Asthenia pigmentosa
  - Primary adrenal deficiency
  - Primary adrenal insufficiency
  - Primary adrenocortical insufficiency
  - Chronic adrenocortical insufficiency
- ◆ Contexts: different hierarchies

eponym

symptoms

clinical variants

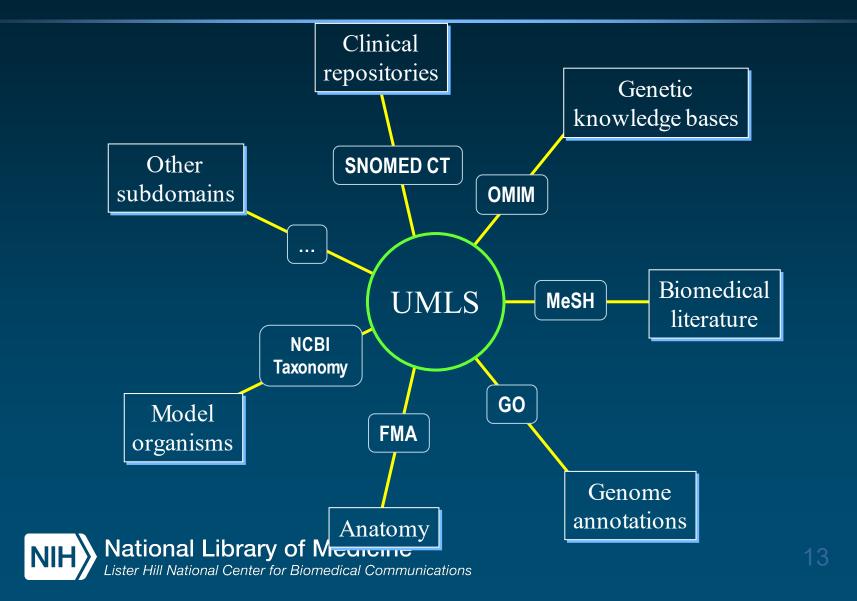
### Organize terms

- ◆ Synonymous terms clustered into a concept
- ◆ Preferred term
- ◆ Unique identifier (CUI)

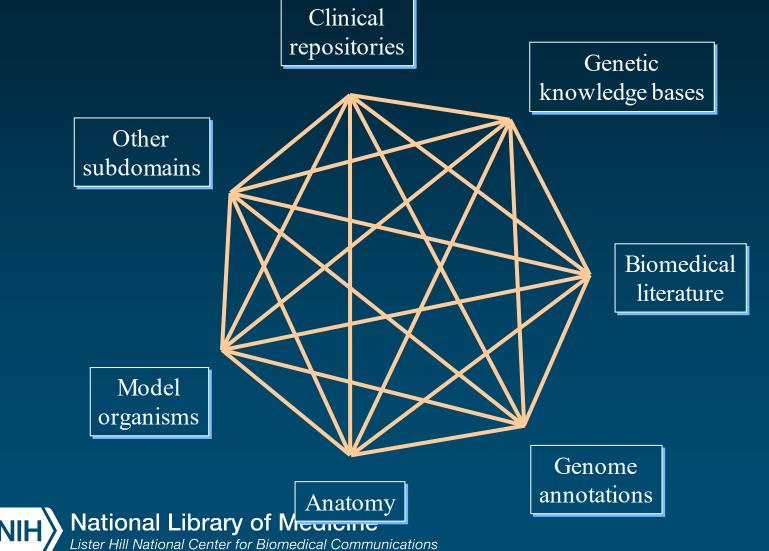
Addison DiseaseMeSHD000224Primary hypoadrenalismMedDRA10036696Primary adrenocortical insufficiencyICD-10E27.1Addison's disease (disorder)SNOMED CT363732003

C0001403

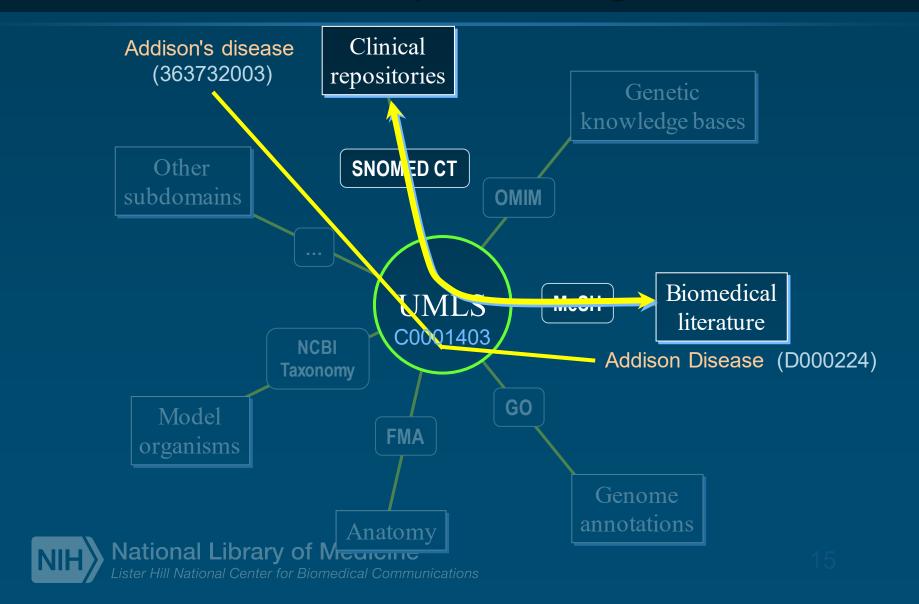
Addison's disease


#### Metathesaurus Concepts (2020AA)

- ◆ Concept (4.3M) CUI
  - Set of synonymous concept names
- ◆ Term (12.1M) LUI
  - Set of normalized names
- ◆ String (13.2M) SUI
  - Distinct concept name
- ◆ Atom (15.5M) AUI
  - Concept namein a given source


```
Headache
A0066000
                     (MeSH)
          Headache
                    (ICD-10)
A0065992
           S0046854
          Headaches (MedDRA)
A0066007
          Headaches (OMIM)
A12003304
           S0046855
          L0018681
A0540936
          Cephalodynia (MeSH)
          S0475647
          L0380797
          C0018681
```




## Integrating subdomains



## Integrating subdomains



## Trans-namespace integration



## Lexical model of synonymy

## From lexical features to synonymy

Adrenal gland diseases

Adrenal disorder

Disorder of adrenal gland

Diseases of the adrenal glands

C0001621

#### Lexical resources

## SPECIALIST Lexicon and lexical tools

https://lhncbc.nlm.nih.gov/LSG/index.html

#### SPECIALIST Lexicon

- **♦** Content
  - English lexicon
  - Many words from the biomedical domain
- ◆ Over 500,000 lexical items
- Word properties
  - morphology
  - orthography
  - syntax
- ◆ Used by the lexical tools

## Morphology

- **♦** Inflection
  - noun nucleus, nuclei
  - verb cauterize, cauterizes, cauterized, cauterizing
  - adjective red, redder, reddest
- **♦** Derivation

  - adjective  $\iff$  noun red -- redness

## Orthography

◆ Spelling variants

oe/eoesophagus - esophagus

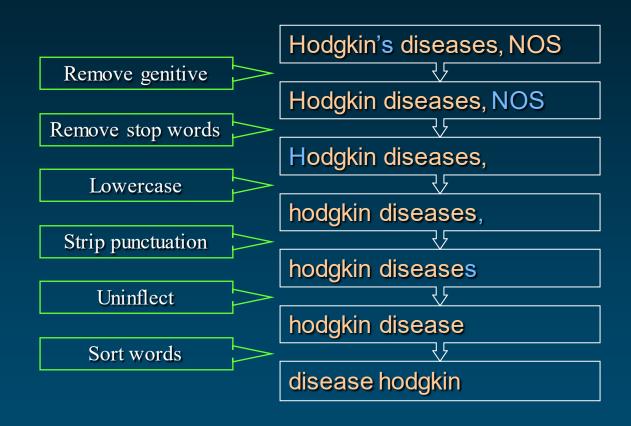
• ae/e anaemia - anemia

• ise/ize cauterize

genitive markAddison's disease

Addison disease

Addisons disease


#### SPECIALIST Lexicon record

```
base=hemoglobin (base form)
spelling_variant=haemoglobin
entry=E0031208 (identifier)
cat=noun (part of speech)
variants=uncount (no plural)
variants=reg (plural: hemoglobins)
}
```

#### Lexical tools

- ◆ To manage lexical variation in biomedical terminologies
- Major tools
  - Normalization
  - Indexes
  - Lexical Variant Generation program (lvg)
- ◆ Based on the SPECIALIST Lexicon
- ◆ Used by noun phrase extractors, search engines

#### Normalization



### Normalization: Example

Hodgkin Disease HODGKINS DISEASE Hodgkin's Disease Disease, Hodgkin's Hodgkin's, disease HODGKIN'S DISEASE Hodgkin's disease Hodgkins Disease Hodgkin's disease NOS Hodgkin's disease, NOS Disease, Hodgkins Diseases, Hodgkins Hodgkins Diseases Hodgkins disease hodgkin's disease

Disease, Hodgkin

normalize disease hodgkin

## Normalization Applications

- ◆ Model for lexical resemblance
- ◆ Help find lexical variants for a term
  - Terms that normalize the same usually share the same LUI
- Help find candidates to synonymy among terms
- ◆ Help map input terms to UMLS concepts

## Principles for asserting synonymy in the UMLS Metathesaurus

- ◆ Lexical similarity is used to identify candidates for synonymy
  - Atoms that do not share a common semantics are prevented from being recognized as synonymous and grouped into the same concept
- ◆ Synonymy asserted between atoms in a source vocabulary tends to be conserved in the Metathesaurus

## Example

| String             | Source      | SCUI     | AUI       | LUI      |
|--------------------|-------------|----------|-----------|----------|
| Headache           | MSH         | M0009824 | A0066000  | L0018681 |
| Headaches          | MSH         | M0009824 | A0066008  | L0018681 |
| Cranial Pains      | MSH         | M0009824 | A1641924  | L1406212 |
| Cephalodynia       | MSH         | M0009824 | A26628141 | L0380797 |
| Cephalodynia       | SNOMEDCT_US | 25064002 | A2957278  | L0380797 |
| Headache (finding) | SNOMEDCT_US | 25064002 | A3487586  | L3063036 |

### Metathesaurus building process

- ◆ All terms from source vocabularies are processed
  - Terms that have the same normalized for are candidates for synonymy
    - Unless they bear different semantics
  - Synonymy indicated by source vocabularies tends to be preserved
- ◆ All candidates (from normalization or sources) are reviewed manually
- ◆ Synonyms are assigned the same CUI
- ◆ Labor-intensive and error-prone

# Supervised machine learning for synonymy prediction

#### Intuition

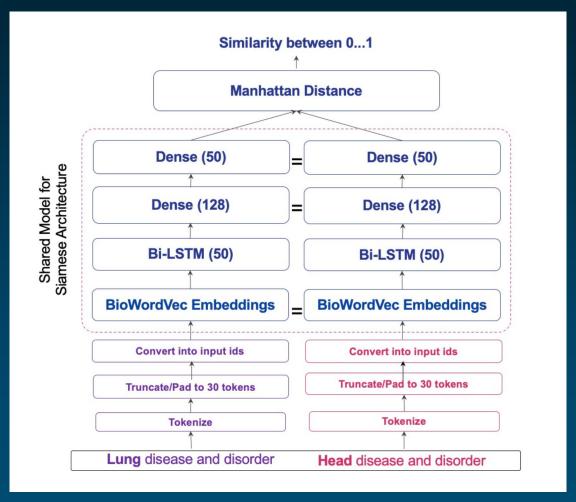
- ◆ Large collection of synonymy assertions in Metathesaurus can be used for supervised learning
  - Positive examples: terms from the same concept
  - Negative examples: terms from different concepts
- ◆ Possible features
  - Lexical (words in a term)
  - Semantic (semantics of the source)
  - Relations to other terms

## Synonymy function

Addison Disease
Primary hypoadrenalism
Primary adrenocortical insufficiency
Addison's disease (disorder)
[...]

C0001403

Hodgkin Disease Granuloma, Malignant Hodgkin lymphoma Malignant lymphoma, Hodgkin's [...]


C0019829

```
syn("Addison Disease", "Primary hypoadrenalism") = 1 syn("Addison Disease", "Hodgkin Disease") = 0
```

#### Neural network architecture

- ◆ Word embeddings
  - Word vectors for representing terms
  - Using BioWordVec
- ◆ Siamese LSTM network
- ◆ Similarity function = Manhattan distance

#### Neural network architecture



### Learning experiments

#### ◆ Hypotheses

- More difficult to predict synonymy among lexically different terms than lexically similar terms
- More difficult to predict non-synonymy among lexically similar terms than among lexically different terms
- **◆** Experiments
  - Different degrees of lexical similarity among negative examples used for learning

#### **Datasets**

| Type            | Positive   | Negative    | All         |
|-----------------|------------|-------------|-------------|
| High similarity | 22,324,834 | 55,909,551  | 78,234,385  |
| Low similarity  | 22,324,834 | 55,909,551  | 78,234,385  |
| No similarity   | 22,324,834 | 58,256,526  | 80,581,360  |
| High+Low+No     | 22,324,834 | 170,075,628 | 192,400,462 |

Positive (selected pairwise within concepts)

("Addison Disease", "Primary hypoadrenalism")

Negative (selected pairwise **between** concepts)

- high sim: ("Addison Disease", "Hodgkin Disease")
- low sim: ("Fracture of left rib", "Traumatic hematoma of left kidney")
- no sim: ("Addison Disease", "Hodgkin lymphoma")

## All models show good performance

| Type            | F1       | <b>F</b> 1 |
|-----------------|----------|------------|
|                 | Training | Validation |
| High similarity | 0.9521   | 0.9333     |
| Low similarity  | 0.9887   | 0.9784     |
| No similarity   | 0.9958   | 0.9899     |
| High+Low+No     | 0.9480   | 0.9287     |

Good performance against unseen data from the same dataset

## Some models generalize poorly

#### Model used for testing

| Model   |
|---------|
| used    |
| for     |
| testing |

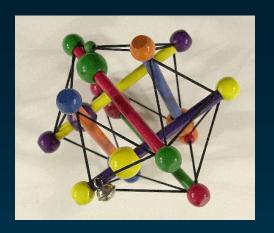
| Type            | F1     | F1     | F1     | F1     |
|-----------------|--------|--------|--------|--------|
|                 | High   | Low    | No     | H+L+N  |
| High similarity | 0.8740 | 0.9117 | 0.9217 | 0.7954 |
| Low similarity  | 0.5678 | 0.9654 | 0.9768 | 0.5572 |
| No similarity   | 0.3593 | 0.7943 | 0.9816 | 0.3286 |
| High+Low+No     | 0.8974 | 0.9469 | 0.9549 | 0.9061 |

Models not trained on high lexical similarity negative examples do not generalize well

## Deep learning vs. normalization and source synonymy

| Type            | F1     | F1     | F1     | F1     |
|-----------------|--------|--------|--------|--------|
|                 | High   | Low    | No     | H+L+N  |
|                 |        |        |        |        |
| Deep learning   | 0.8974 | 0.9469 | 0.9549 | 0.9061 |
| (High+Low+No)   |        |        |        |        |
| Normalization+  | 0.7672 | 0.8109 | 0.8145 | 0.7651 |
| Source synonymy |        |        |        |        |

Deep learning model largely outperforms normalization+source synonymy


#### Discussion

- **♦** Encouraging results
  - Outperforms Normalization+Source synonymy
- ◆ Inclusion of lexically similar terms among negative examples is key to performance
- Areas for improvement
  - More sophisticated embeddings (e.g., BERT)
  - Integration of context (source synonymy, relations)
- Applications
  - Integration of new terminology into Metathesaurus

## Summary

## Summary

- ◆ The UMLS Metathesaurus is a biomedical terminology integration system
- Metathesaurus construction has relied on a lexical model for synonymy and human review
- ◆ Supervised machine learning approaches to predicting synonymy have shown promising results



## Medical Ontology Research

Contact: olivier@nlm.nih.gov

Web: mor.nlm.nih.gov

Olivier Bodenreider



#### References

- **♦** UMLS overview
  - Bodenreider O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. *Nucleic Acids Research*; D267-D270.
- ◆ Supervised learning approach
  - Nguyen V, Yip HY and Bodenreider O. Biomedical vocabulary alignment at scale in the UMLS Metathesaurus. *Proceedings of the Web Conference 2021 (WWW'21)*; 2672-2683.