The Fed-BioMed Project Federated Learning Across Health Institutions in France

Marco Lorenzi

Inria Sophia Antipolis, Université Côte d'Azur Epione Research Group

IA in Healthcare need for large data repositories

SCIENCES · SANTÉ

Partage (f) (

TRIBUNE

« Les données de santé servent l'intérêt public, il y a urgence à en faciliter l'accès »

Le retard pris dans le déploiement du Health Data Hub, infrastructure unique facilitant l'accès aux données de santé de façon sécurisée, est inquiétant, affirment les membres de son conseil scientifique consultatif dans une tribune au « Monde ».

Publié hier à 06h30, mis à jour hier à 07h20 | Ō Lecture 4 min.

III Article réservé aux abonnés

Le Monde, 20/10/2021

Access and sharing of multiple centers data falls into General Data Protection Regulation (GDPR): Privacy, confidentiality, security, ...

Al is not explicitly mentioned in the GDPR, but many provisions in the GDPR are relevant to AI, and some are indeed challenged by the new ways of processing personal data that are enabled by AI

- Ethical principles include autonomy, prevention of harm, fairness and explicability;

- legal principles (EU rights and social values, in the EU treaties, national constitutions).

Purpose limitation

Compatible with AI and big data, through a flexible application of the idea of compatibility, which allows for the reuse of personal data

Data minimisation

Reducing, through measures such as pseudonymisation, the ease with which the data can be connected to individuals. Reidentification should indeed be strictly prohibited unless all conditions for the lawful collection of personal data are met.

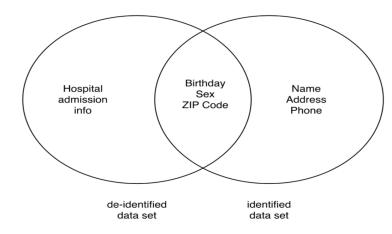
Preventive measures

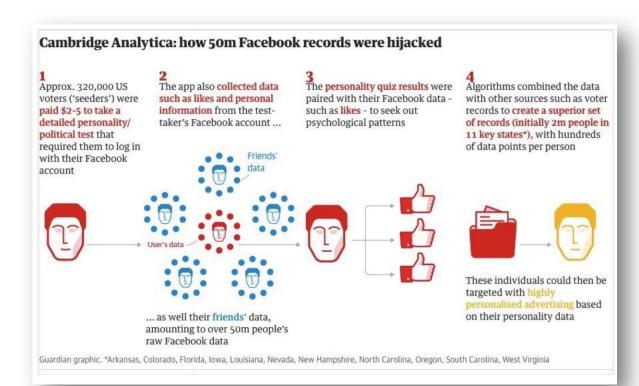
It needs to be clarified which AI applications present high risks and therefore require a preventive data protection assessment, and possibly the preventive involvement of data protection authorities.

https://bit.ly/3lyJFg7

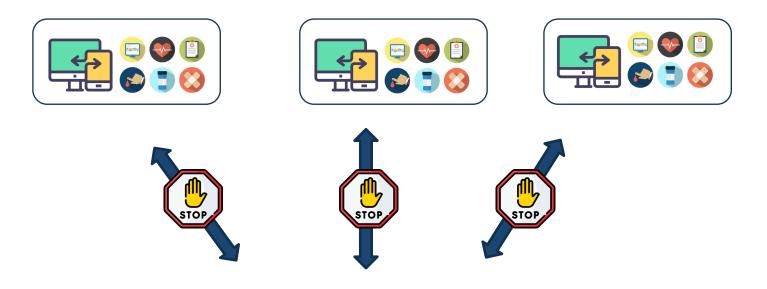
The inference of new personal data, as it is done in profiling, should be considered as creation of new personal data, when providing an input for making assessments and decisions. The same should apply to the re-identification of anonymous or pseudonymous data.

The risk with pseudo-anonymization

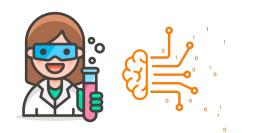




A centralized paradigm?

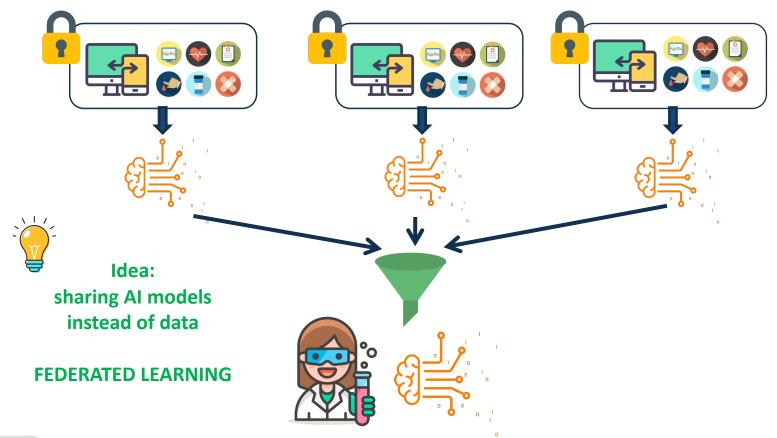


Problem: Developing AI requires data access

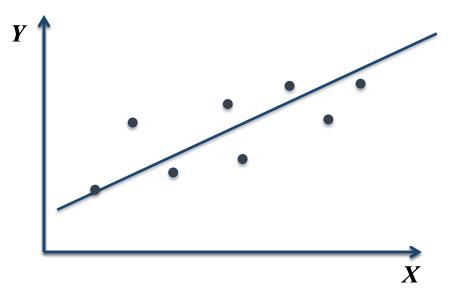


GDPR General Data Protection Regulation

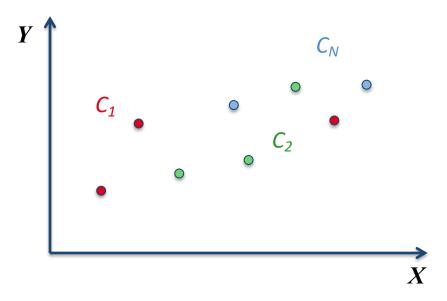
The federated paradigm



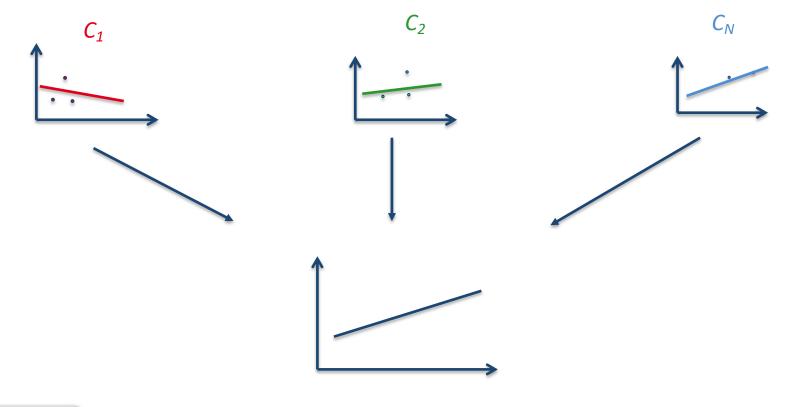
Federated linear modeling



Federated linear modeling

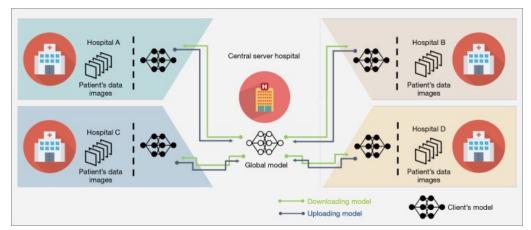


Federated linear modeling



Inría

Federated Learning for Collaborative Data Science



From Ng et al, Quant Imaging Med Surg, 2021;

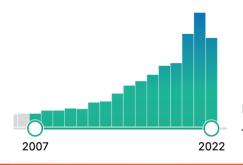


Table 1

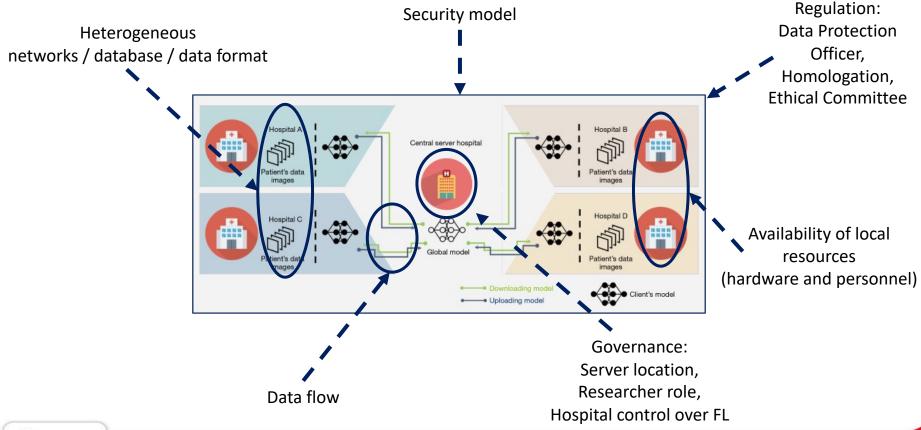
Summary of recent work on federated learning for healthcare

2			-		
2020	Problem	ML method	No. of clients	Data	
S.	Patient similarity learning [62]	Hashing	3	MIMIC-III [50]	
Re	Patient similarity learning [108]	Hashing	20	MIMIC-III	
Ę	Phenotyping [55]	TF	1-5	MIMIC-III, UCSD [104]	
al. J Healthc Inform Res.	Phenotyping [67]	NLP	10	MIMIC-III	
	Representation learning [93]	PCA	10-100	ADNI, UK Biobank, PPMI, MIRIAD	
5	Mortality prediction [45]	Autoencoder	5-50	eICU Collaborative Research Database [81]	
Ĕ	Hospitalization prediction [10]	SVM	5, 10	Boston Medical Center	
Ĕ	Preterm-birth prediction [9]	RNN	50	Cerner Health Facts	
ŭ	Mortality prediction [80]	LR, NN	31	eICU Collaborative Research Database	
-	Mortality prediction [90]	LR, MLP	2	MIMIC-III	
-	Activity recognition [16]	CNN	5	UCI Smartphone [4]	
	Adverse drug reactions Prediction [19, 20]	SVM, MLP, LR	10	LCED, MIMIC	
From Xu et	Arrhythmia detection [110]	NN	16, 32, 64	PhysioNet Dataset [21]	
	Disease prediction [33]	NN	5, 10	Pima Indians Diabetes Dataset [95], Cleveland Heart Disease Database [23]	
	Imaging data analysis	VAE	4	MNIST, Brain Imaging Data	
Ē	Mortality prediction [101]	LRR, MLP, LASSO	5	Mount Sinai COVID-19 Dataset	

PubMed query "federated learning" June 6th 2021

Rieke et al. NPJ Digit Med. 2020; Xu et al. J Healthc. Inform Res. 2020

Translation of Collaborative Medical Data Analysis



(some) Open FL software initiatives

Coinstac.org

PySyft github.com/OpenMined/PySyft

Flower flower.dev

LEAF leaf.cmu.edu

Tensor Flow Federated www.tensorflow.org/federated

FedML github.com/FedML-AI

FL Software Requirements and Challenges

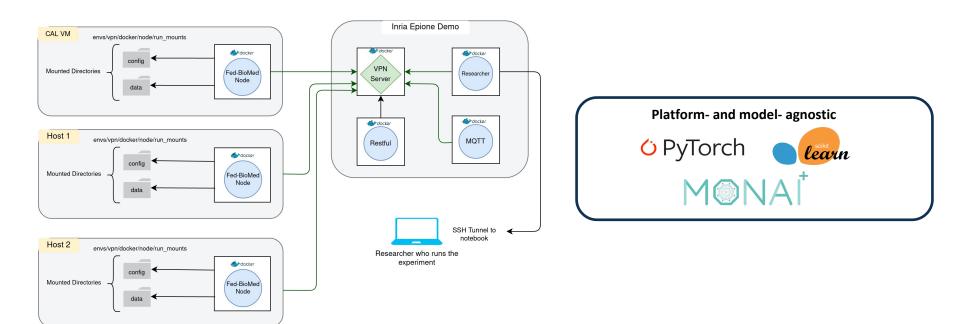
- Lack of standards
- Scalability
- Portability
- Generalization to multiple ML frameworks
- Security
- Open technology
- Support for medical data analysis

Fed-BioMed fedbiomed.gitlabpages.inria.fr

Tailored for AI applications in healthcare

Simplified model development and deployment Security and compatibility with hospital networks Security/Governance

Framework architecture



FL Design choices: From research to real-life

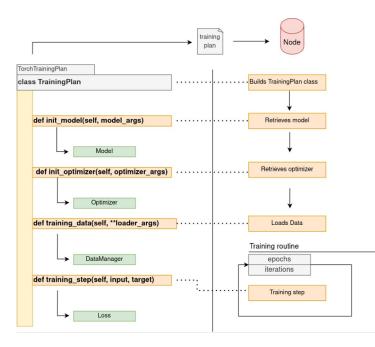
Researchers

- Flexible experimentation environment
- Launching different experiment easily
- Control over experiment parameters
- Real-time feedback

Clients/Data owners

- Constraints
- Approval of an experiment
- Overwriting requests
- Privacy

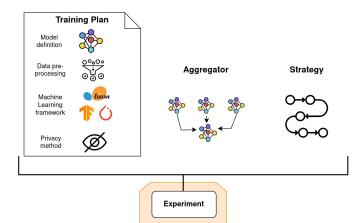
Training Plan



- Managing training through parameters/arguments
- Multiple models and multiple experiments
- Allowing preprocessing
- Monitoring training/testing in real-time

A typical FL Strategy (e.g. Fed-Avg, Fed-Prox, Scaffold)

- Pre-processing needed
- Privacy model
- Model to be deployed
- Quantities to aggregate
- Client sampling rule



Researcher

(j)

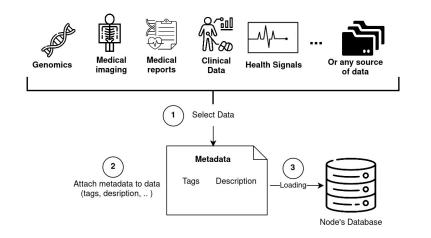
Privilege to overwrite requests

training/model/optimizer arguments number of rounds batch size arguments specific to method DP parameters

allowed max rounds of training force GPU/CPU usage allowed number of samples force private DP parameters

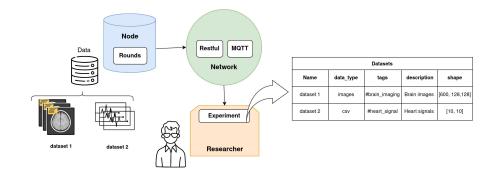
FL subject to dynamically changing conditions

Handling Heterogeneity



Generally limited interoperability with hospital database Requires available local knowledge Data preparation is time consuming

- System Interoperability, interface with PACS
- Standardization
- Handling Errors



FL Security

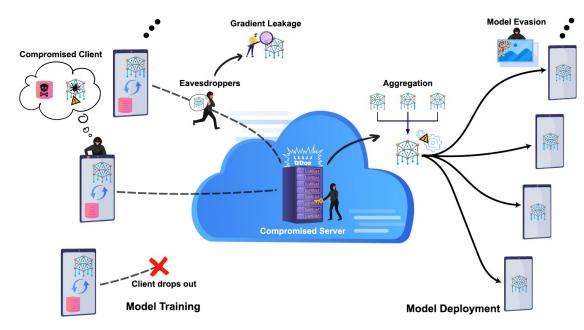
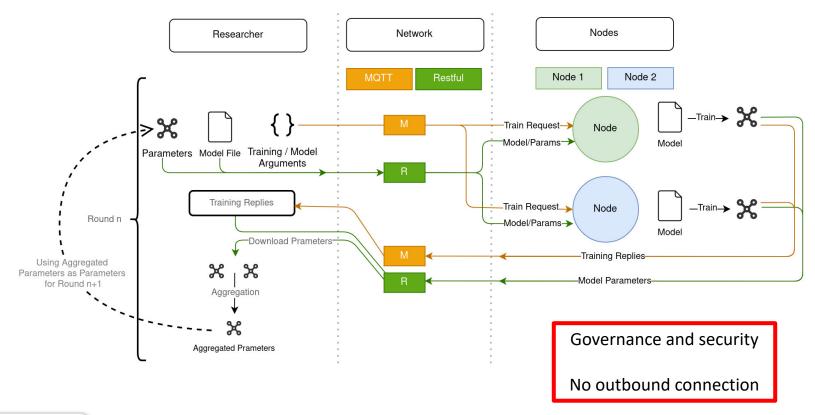


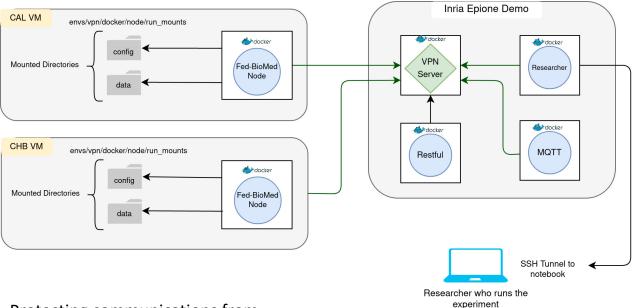
FIGURE 1. The lifecycle of FL process and the various sources of vulnerabilities.

From Bouacida et al. IEEE Access 2021

Low-level: Data Flow



Low-level: VPN

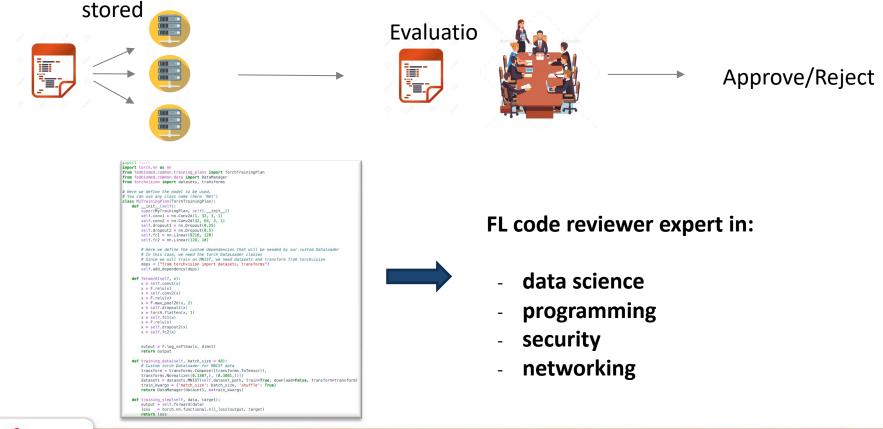


Protecting communications from

- External attackers
- Internal attackers (man-in-the-middle)

Control

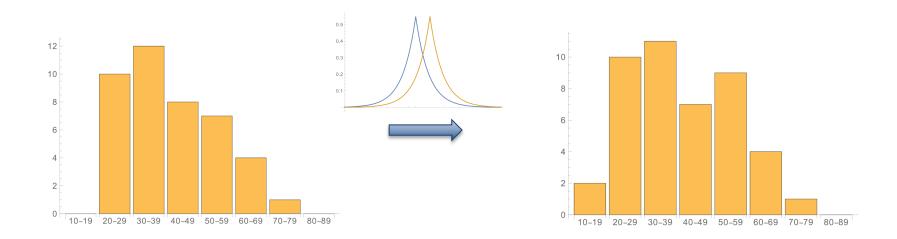
A piece of software is going to be executed on the client where private data is



ML-Level: Differential Privacy

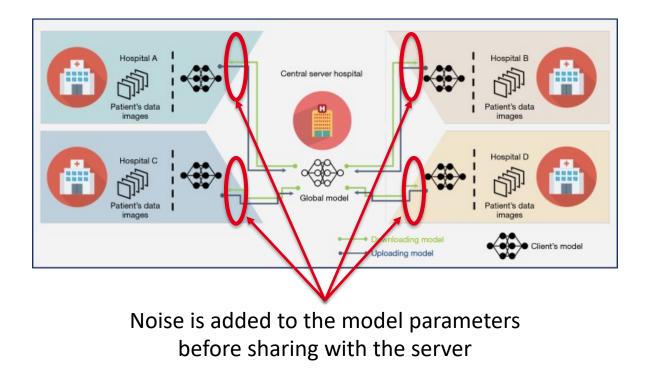
https://bit.ly/3lKJh4F from desfontain.es

The attacker knows *almost all elements* Identifying the contribution of a single person



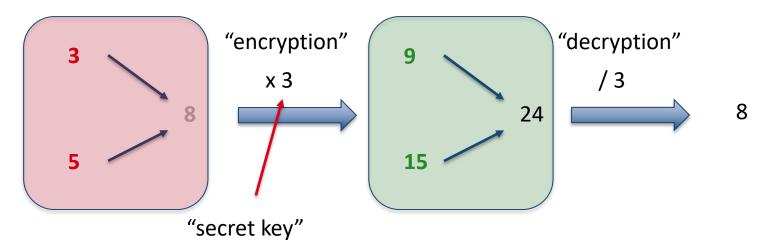
Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy", 2014

ML-Level: Differential Privacy



ML-Level: Homomorphic Encryption

Encrypting the data compatibly with mathematical operations

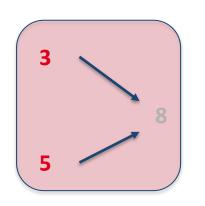


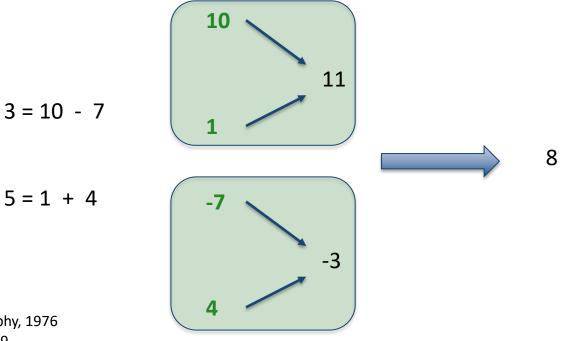
Rivest, R. L., et al, On data banks and privacy homomorphisms, 1978 Gentry, C. *A fully homomorphic encryption scheme*. 2009 Yagisawa, M. Fully homomorphic encryption without bootstrapping. 2015

ML-Level: Multi-Party Computation

Encrypting the data compatibly with mathematical operations

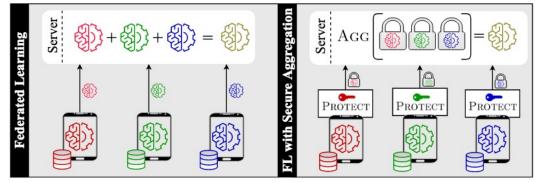
5 = 1 + 4





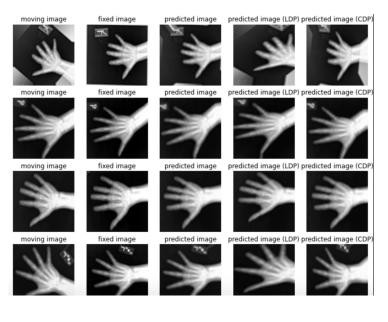
Diffie et al. New directions in cryptography, 1976 Shamir et al. How to share a secret. 1979 Yao et al. How to generate and exchange secrets. 1986

ML-Level: Secure Aggregation



From Mansouri, Önen, Jaballah, Proc ACM Conference. 2017

Challenges



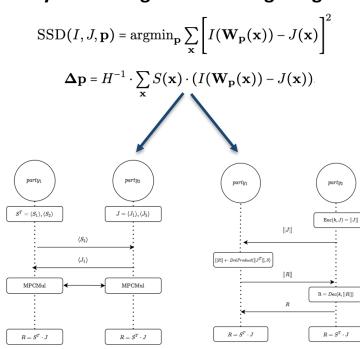
DP

Utility vs Security Data dependency Communication and acceptance of DP

Secure Aggregation

Guarantees on trusted parties within FL network Multi-key frameworks, key generation Communication Cost Computational cost Limited operations

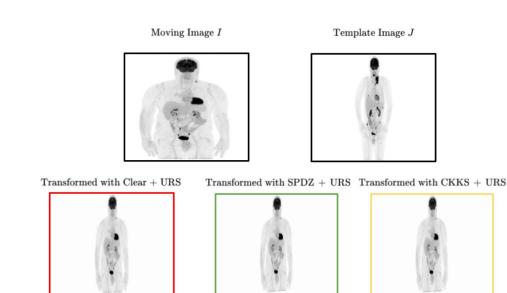
Privacy Tailored to Medical Applications



(a) Multi Party Computation

Inría

(b) Fully Homomorphic Encryption



Privacy Preserving Medical Image Registration

Taiello, Önen, Humbert, Lorenzi. MICCAI 2022

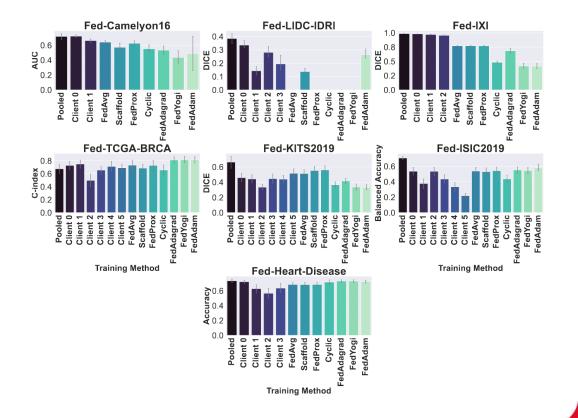
Ethical and Legal Questions

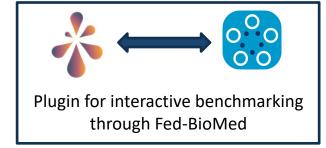
Who controls FL execution Responsibilities for security breach Who owns a FL infrastructure Who owns the results Reward scheme Exploitation of model and results Right to be forgotten: machine unlearning

Cost-Effectiveness

FLamby

https://github.com/owkin/FLamby





Fed-BioMed

Federated Learning for Healthcare

https://fedbiomed.gitlabpages.inria.fr/

Security

- Clients authentication
- Secured communications
- Model verification
- Differential Privacy
- Secure aggregation (coming release)

Client control / Governance

- Experiment opt-in / -out
- Monitoring Tools
- Data verification/ pre-processing
- GUI
- Handling heterogeneous data types

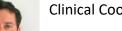
BIA Côte d'Azur Institut interdisciplinaire d'intelligence artificielle

Usability

- Numpy/Pytorch/MONAI/sklearn compatible
- Easy control with Jupyter notebook
- Breakpoints and control of experiment
- Error handling
- FL aggregation and sampling strategies
- FL simulator

Community-driven

- Roadmap inspired by collaborating hospitals
- Long term planning and institutional support
- Commercial-friendly license (Apache 2.0)

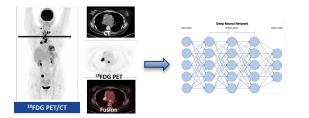


Clinical Coordinator

Real-world deployment

3IA chair Prof. O. Humbert Centre Antoine Lacassagne

18 FDG-PET Analysis for Predicting Treatment Response in Lung Cancer



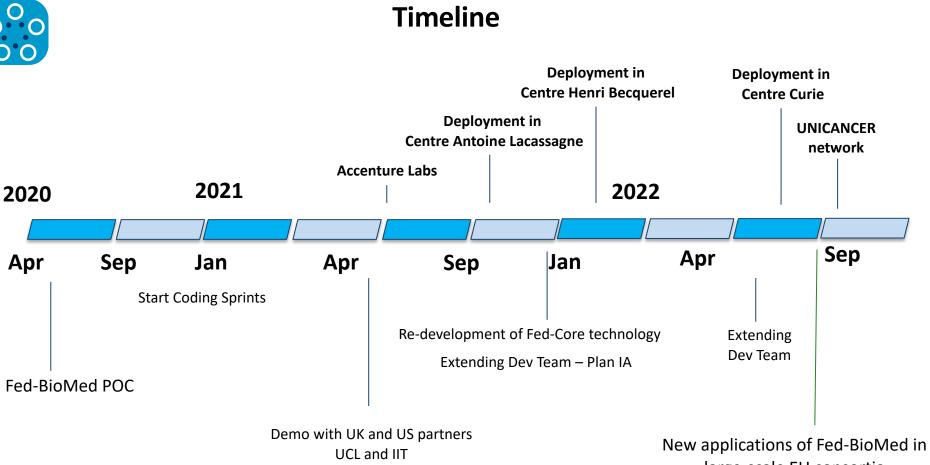
Humbert et al. Eur J Nucl Med Mol Imaging. 2020

Multi-centric Neuroimaging Studies

Table 1. Demographics for each of the centers sharing brain-imaging data. MCI: Mild Cognitive Impairment; AD: Alzheimer's Disease.

	France	US	UK	France 2				
No. of participants (M/F)	448/353	454/362	1070/930	573/780				
Clinical status								
No. healthy	175	816	2000	695				
No. MCI and AD	621	0	0	358				
$Age \pm sd$ (range) [years]	73.74 ± 7.23	28.72 ± 3.70	63.93 ± 7.49	67.58 ± 10.04				
Age range [years]	54 - 91	22 - 37	47 - 81	43 - 97				

Silva, Altmann, Gutman and Lorenzi. DECAF MICCAI Workshop, 2020



large-scale EU consortia

Samy Ayed Irene Balelli Francesco Cremonesi Yann Fraboni Santiago Silva Riccardo Taiello

Olivier Humbert Hamid Laceb

(informatiques mathématiques

Marc Vesin Yannick Bouillard Sergen Cansiz Paul Andrey Aurélien Bellet Marc Tommasi Jean-Luc Szpyrka Thibaud Kloczko

Thanks!

Bastien Houis Nathan Lapel Romain Modzelewski

Melek Önen Mohamad Mansouri

Laetitia Kameni Richard Vidal

