
Prediction models in healthcare:               
a playground for researchers?

Richard D. Riley
Professor of Biostatistics

Institute of Applied Health Research
University of Birmingham, UK

e-mail: r.d.riley@bham.ac.uk
X: @Richard_D_Riley

BlueSky: @richarddriley

BIG THANKS: Gary Collins (Oxford)

FUNDING: NIHR Birmingham Biomedical Research Centre, 
ESPRC grant for AI to accelerate healthcare research



Prediction models in healthcare:               
a playground for researchers

Richard D. Riley
Professor of Biostatistics

Institute of Applied Health Research
University of Birmingham, UK

e-mail: r.d.riley@bham.ac.uk
X: @Richard_D_Riley

BlueSky: @richarddriley

BIG THANKS: Gary Collins (Oxford)

FUNDING: NIHR Birmingham Biomedical Research Centre, 
ESPRC grant for AI to accelerate healthcare research



www.prognosisresearch.com                           @Richard_D_Riley

“Patient trust was essential in the healing process. It could be 
won by a punctilious bedside manner, by meticulous 
explanation, and by mastery of prognosis, an art demanding 
experience, observation and logic’” 

Galen, 2nd Century AD

PORTER, R. 1999. The greatest benefit to mankind : a medical history of 
humanity from Antiquity to the present, London, FontanaPress

3



INTRODUCTION TO PREDICTION 
MODELS IN HEALTHCARE

Part 1
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Prediction model research

• Prediction models utilise multiple prognostic factors (predictors, features) to 
estimate the risk of a particular outcome in individuals

• A useful model provides accurate predictions that:
   - reliably inform patients & health professionals about outcome risks
   - guide healthcare decisions that improve outcomes
   - improve clinical research (e.g. trial randomisation)
  
• Crucial: focus is estimating (predicting) values for individuals
• Based on (penalised) regression models, random forests, neural networks etc
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Example: outcome risk in traumatic brain injury
Web-tool below used to calculate 14 day mortality risk, & 6-month unfavourable outcome risk for an 
individual based on multiple prognostic factors in combination 
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Prediction models are hot topic - inform 
clinical & public health guidelines 
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What do we need?
• Predictions should be accurate and clinically useful 

• We should know the model’s predictive performance
• Does it give estimated risks that,
 - calibrate closely with observed risks?
 - discriminate (separate) those who do & do not develop the outcome?

 - provide clinical utility (e.g. guide decisions at particular risk thresholds)

• Has the model been shown to work in intended populations and settings 
of interest? (validation studies)
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What do we need?
• Predictions should be accurate and clinically useful 

• We should know the model’s predictive performance
• Does it give estimated risks that,
 - calibrate closely with observed risks? CALIBRATION PLOTS & STATISTICS
 - discriminate (separate) those who do & do not develop the outcome?
            AUROC / C-STATISTIC
 - provide clinical utility (e.g. guide decisions at particular risk thresholds)
            NET BENEFIT & DECISION CURVES

• Requires careful statistical modelling and assessment
30



Calibration plots especially important
Example: Prediction model for 30-day mortality following acute MI

• Dotted line is ideal
• Calibration curve important
(often just get green groupings)

• O/E = 1.01 (ideal 1)
• Cal slope = 0.72 (ideal 1)

• C-statistic (AUROC) = 0.81
• C range is 0.5 to 1 
• But a ‘good’ C is context specific
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THE PLAYGROUND OF PREDICTION 
MODEL RESEARCH

Part 2
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“We have to reduce our expectations of England 
and we have the players to do it”

         Steve McLaren 
(England Football Manager)
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Landscape of clinical prediction models

Thanks to Maarten van Smeden for this slide

• 37 models for treatment response in pulmonary TB (Peetluk, 2021)
• 35 models for in vitro fertilisation (Ratna, 2020)
• 34 models for stroke in type-2 diabetes (Chowdhury, 2019)
• 34 models for graft failure in kidney transplantation (Kabore, 2017)
• 31 models for length of stay in ICU (Verburg, 2016)
• 30 models for low back pain (Haskins, 2015)
• 27 models for pediatric early warning systems (Trubey, 2019)
• 27 models for malaria prognosis (Njim, 2019)
• 26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
• 26 models for childhood asthma (Kothalawa, 2020)
• 25 models for lung cancer risk (Gray, 2016)
• 25 models for re-admission after admitted for heart failure (Mahajan, 2018)
• 23 models for recovery after ischemic stroke (Jampathong, 2018)
• 23 models for delirium in older adults (Lindroth, 2018)
• 21 models for atrial fibrillation detection in community (Himmelreich, 2020)
• 19 models for survival after resectable pancreatic cancer (Stijker, 2019)
• 18 models for recurrence hep. carcinoma after liver transplantation (Al-

Ameri, 2020)
• 18 models for future hypertension in children (Hamoen, 2018)
• 18 models for risk of falls after stroke (Walsh, 2016)
• 18 models for mortality in acute pancreatitis (Di, 2016)
• 17 models for bacterial meningitis (van Zeggeren, 2019)
• 17 models for cardiovascular disease in hypertensive population (Cai, 2020)
• 14 models for ICU delirium risk (Chen, 2020)
• 14 models for diabetic retinopathy progression (Haider, 2019)

• 408 models for COPD prognosis (Bellou, 2019)
• 363 models for cardiovascular disease general population (Damen, 

2016)
• 263 prognosis models in obstetrics (Kleinrouweler, 2016) 
• 258 models mortality after general trauma (Munter, 2017)
• 232 models related to COVID-19 (Wynants, 2020)
• 160 female-specific models for cardiovascular disease (Baart, 2019)
• 119 models for critical care prognosis in LMIC (Haniffa, 2018)
• 101 models for primary gastric cancer prognosis (Feng, 2019)
• 99 models for neck pain (Wingbermühle, 2018)
• 81 models for sudden cardiac arrest (Carrick, 2020)
• 74 models for contrast-induced acute kidney injury (Allen, 2017)
• 73 models for 28/30 day hospital readmission (Zhou, 2016)
• 68 models for preeclampsia (De Kat, 2019)
• 67 models for traumatic brain injury prognosis (Dijkland, 2019)
• 64 models for suicide / suicide attempt (Belsher, 2019)
• 61 models for dementia (Hou, 2019)
• 58 models for breast cancer prognosis (Phung, 2019)
• 52 models for pre‐eclampsia (Townsend, 2019)
• 52 models for colorectal cancer risk (Usher-Smith, 2016)
• 48 models for incident hypertension (Sun, 2017)
• 46 models for melanoma (Kaiser, 2020)
• 46 models for prognosis after carotid revascularisation (Volkers, 

2017)
• 43 models for mortality in critically ill (Keuning, 2019)
• 42 models for kidney failure in chronic kidney disease (Ramspek, 

2019)
• 40 models for incident heart failure (Sahle, 2017)

• Very few have been ‘validated’ in new data & compared 
• Calibration & clinical utility rarely assessed
• Models are easy to create 
 - was there any intention for them to be used?
 - or just extra line on a CV?

- Should we trust them? Mostly no!
- Could they be harmful? Yes!     

(decisions based on unreliable predictions)



COVID19 PANDEMIC - An opportunity to take centre(ish) stage



Aims of our review
• To review and critically appraise published reports (and 

preprint reports) of prediction models for

• Diagnosing covid-19 in patients with suspected infection

• Prognosis of patients with covid-19 infection

• Identifying people in general population at increased risk of infection & 
hospital admission

By July 2020… 169 studies identified, proposing 232 prediction models
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Our risk of bias (quality) summary
• Participants domain: 98/232 (42%) at high risk of bias; 58 (25%) unclear

• Non-representative of the target population (e.g., non-consecutive patients)
• e.g. no COVID19 patients included (even just simulated data)

• Predictors domain: 15/232 (6%) at high risk of bias; 135 (35%) unclear
• Predictors not available at time of intended model use

• Outcome domain: 50/232 (22%) at high risk of bias; 87 (38%) unclear
• Subjective or proxy outcomes
• Predictors part of the outcome definition

• Analysis domain: 218/232 (94%) at high risk of bias; 13 (6%) unclear
• Small sample size (->overfitting & no adjustment), dichotomisation of 

continuous predictors, incomplete reporting of model performance (e.g., no 
calibration), not accounting for censoring, no external validation
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* Final update published 17 July 2022: 
• Included studies published up until February 2021
• 731 models 

• 606 prognostic models
• 29 low risk of bias
• 32 unclear risk of bias
• 545 high risk of bias (90%)



Example: Guan et al. (2021)
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*Guan et al, Ann Med 2021

Prognostic model for risk of death 
from covid19

“Simple-tree XGBoost model conducted 
by these features can predict death risk 
accurately”

Sample size

Internal: 217 participants (16 events) 

External: 279 participants (7 events) 

No calibration checks



Miscalibration & spin

19

“The calibration curve showed a 
good agreement between the 
predictive risk and the actual probability”

“Good calibration” 
“Hosmer-Lemeshow Test: p-value = 1.0”



A good prediction model study

• Extensive internal and external validation in very large samples
• Assessed discrimination, calibration & clinical utility
• Performance showed good generalisability

Lancet Respir Med. 2021 Apr; 9(4): 349–359.
20



A good prediction model study
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A good prediction model study
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HOW CAN WE DO BETTER?
Part 3
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Hard to stop making predictions
• Paul Gascoigne (footballer): 

  “I never make predictions & I never will”
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Hard to stop making predictions
• Paul Gascoigne (footballer): 

  “I never make predictions & I never will”

• Andrea Leadsom (MP), 5th December 2018
  “I have never, and will not, start predicting the future… I don’t do predictions ever” 
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Hard to stop making predictions
• Paul Gascoigne (footballer): 

  “I never make predictions & I never will”

• Andrea Leadsom (MP), 5th December 2018
  “I have never, and will not, start predicting the future… I don’t do predictions ever” 
  (a few hours later …)

  “I am a very strong arch Brexiteer, I genuinely believe that we have a bright future 
 ahead of us when we leave the EU”

So, if we are to keep making predictions, let’s improve our methodology standards …
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We must do better
Challenge for us all: 
 - strive for better prediction model research

• Register projects, e.g. clinicaltrials.gov
• Publish protocols, e.g. Diagnostic & Prognostic Research
• Validate existing models (no need for a new model?)

• Include statisticians & health data experts from outset
• Work with clinical experts to understand why the model is needed

• Clearly report your project methods & findings
27



TRIPOD reporting guideline

• “Good reporting is not an optional extra; it is an essential component of 
research” - Altman et al. Open Med 2008

• TRIPOD: Transparent reporting of a multivariable prediction model for 
individual prognosis or diagnosis

• 32 items covering 22 ‘topics’ for model development & validation
• Soon to be updated to TRIPOD+AI
• www.tripod-statement.org 
  - includes extensions to systematic reviews, clusters, protocols, …

28

http://www.tripod-statement.org/


Do not dichotomise continuous predictors

29

Dichotomisation is biologically implausible
• e.g. dichotomise age into two groups: <65, or ≥ 65
  - Individuals aged 64 and 65 considered different
  - Individuals aged 23 and 64 considered the same

Dichotomisation leads to worse performance & data-dredging

• e.g. selection of ‘optimal’ cut-points to maximise statistical significance

Rather model non-linear relationships (e.g., splines, polynomials)

Thresholds for decision making can be defined AFTER analysis on a 
relevant scale (e.g. based on predicted risk) 



Beyond calibration & discrimination
• Example: Prediction of 30-day mortality in acute MI patients
• Calibration slope = 0.72

• Calibration is not perfect                    = 
but miscalibration                                                                        is 
mainly in areas above                    
risks of about 15-20%                    
i.e. driven by those with                   
the highest risk (where                    
the under-prediction of              
risks may not matter)

• Model could still be clinically useful

30

(a) Binary outcome example: Probability of 30-day mortality following an acute myocardial   

 
 



Evaluating clinical impact
• Cost-effectiveness modelling
  - simulate patients and pathways, conditional on model predictions
  - are outcomes improved and process cost-effective?

• Randomised trial
  - one group uses the model (+ usual care); other group uses usual care only
  - are patient outcomes improved?

• Decision Analysis and evaluation of ‘net benefit’ (clinical utility)
  - weigh benefits (improved outcomes) vs. harms (worse outcomes, costs)
  - depends on potential risk thresholds (identified in advance of analysis)
  e.g. 10% threshold: willing to ‘treat’ 10 individuals so that 1 benefits
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Revisit the acute MI model
• Despite miscalibration, still potential clinical utility 
• Very dependent on the (range of) thresholds deemed relevant 
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Aim to develop a stable model
• Models more reliable & stable when developed using

– large sample sizes representative of target population
– appropriate no. predictors relative to no. events 
– approaches to ‘address’ overfitting (e.g. lasso, ensemble methods)
– resampling (e.g. cross-validation, bootstrapping) to examine/adjust optimism 

•  Concerns of an unreliable model exposed by examining model instability
 - bootstrapping: develop multiple models & see how predictions change
 - you may be shocked what you find …

Riley & Collins, 2023 – Biometrical Journal
33www.prognosisresearch.com                           @Richard_D_Riley



Many previous papers on this topic
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Is your model stable? Most models are like …



Instability
• What do we mean by instability?

– Idea that your developed model (e.g. regression, forest) may be different if it were developed 
again in exactly same way in a different sample of same size from same population

e.g. different intercept estimate, different selected predictors, different trees & predictor effects
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Instability
• What do we mean by instability?

– Idea that your developed model (e.g. regression, forest) may be different if it were developed 
again in exactly same way in a different sample of same size from same population

e.g. different intercept estimate, different selected predictors, different trees & predictor effects

• Instability in a model leads to instability in predictions
– Predictions from your model are different to predictions from another (hypothetical) model
– e.g. Sam obtains an estimated risk of 0.2 in your model, but 0.7 in another model
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Instability
• What do we mean by instability?

– Idea that your developed model (e.g. regression, forest) may be different if it were developed 
again in exactly same way in a different sample of same size from same population

e.g. different intercept estimate, different selected predictors, different trees & predictor effects

• Instability in a model leads to instability in predictions
– Predictions from your model are different to predictions from another (hypothetical) model
– e.g. Sam obtains an estimated risk of 0.2 in your model, but 0.7 in another model

• The larger the instability concern, the greater the threat a model is unreliable
• Large instability => poor internal validity (in the development population) 

• We should always examine & report instability after developing our models …
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Quantifying instability using bootstrapping
• Use bootstrapping with replacement (i.e. resample from the model development data)
• Generate 1000 bootstrap samples, each of same size as original dataset. Then …

1) in each bootstrap sample, develop new model using same model development steps 
 - this produces 1000 bootstrap models
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Quantifying instability using bootstrapping
• Use bootstrapping with replacement (i.e. resample from the model development data)
• Generate 1000 bootstrap samples, each of same size as original dataset. Then …

1) in each bootstrap sample, develop new model using same model development steps 
 - this produces 1000 bootstrap models

2) in original sample, calculate predictions for each individual for each bootstrap model 
  - leads to 1000 predicted values (estimated risks) for each individual
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Quantifying instability using bootstrapping
• Use bootstrapping with replacement (i.e. resample from the model development data)
• Generate 1000 bootstrap samples, each of same size as original dataset. Then …

1) in each bootstrap sample, develop new model using same model development steps 
 - this produces 1000 bootstrap models

2) in original sample, calculate predictions for each individual for each bootstrap model 
  - leads to 1000 predicted values (estimated risks) for each individual
3) present a “prediction instability plot” 
   - bootstrap model predictions (y-axis) vs. original model prediction (x-axis).
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Quantifying instability using bootstrapping
• Use bootstrapping with replacement (i.e. resample from the model development data)
• Generate 1000 bootstrap samples, each of same size as original dataset. Then …

1) in each bootstrap sample, develop new model using same model development steps 
 - this produces 1000 bootstrap models

2) in original sample, calculate predictions for each individual for each bootstrap model 
  - leads to 1000 predicted values (estimated risks) for each individual
3) present a “prediction instability plot” 
   - bootstrap model predictions (y-axis) vs. original model prediction (x-axis).
4) present other measures, such as 
  - “classification instability plot” and “calibration instability plot”
  - MAPE: mean absolute difference between original and bootstrap model predictions 
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Real example
• Develop a prediction model for risk of death by 30 days after acute myocardial infarction
• Use GUSTO-I dataset (freely available - acknowledge Duke Clinical Research Institute)

• In full dataset: 40830 participants & 2851 deaths by 30 days
• Overall risk is about 7%

• Eight predictors are of interest: 
 - Sex, Age, Hypertension, Hypotension, Tachycardia, Previous Myocardial Infarction, ST 

Elevation on ECG, and systolic blood pressure. 
• A lasso logistic regression fitted to the full dataset gives C-statistic of 0.80

• Let’s apply bootstrapping to examine instability of this model …
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Example 1: lasso logistic regression
• FULL: 40,830 patients, 2851 events, 407 events per predictor
• Average MAPE = 0.0027 (largest 0.027)
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Example 1: lasso logistic regression
• FULL: 40,830 patients, 2851 events, 407 events per predictor
• Average MAPE = 0.0027 (largest 0.027)
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• SMALL: 500 patients, 35 events, 4 events per predictor
• Average MAPE = 0.023 (largest 0.14)
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Example 1: lasso logistic regression
• FULL: 40,830 patients, 2851 events, 407 events per predictor
• Average MAPE = 0.0027 (largest 0.027)

45

• SMALL: 500 patients, 35 events, 4 events per predictor
• C-STATISTIC RANGES FROM 0.77 to 0.83
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Example 1: lasso logistic regression
• FULL: 40,830 patients, 2851 events, 407 events per predictor
• CALIBRATION INSTABILITY
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• SMALL: 500 patients, 35 events, 4 events per predictor
• CALIBRATION INSTABILITY
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Example 1: lasso logistic regression
• FULL: 40,830 patients, 2851 events, 407 events per predictor
• CALIBRATION INSTABILITY

47

• SMALL: 500 patients, 35 events, 4 events per predictor
• CALIBRATION INSTABILITY
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Hang on … don’t AI methods resolve this?
• Lots of work to improve stability of models 
• Modern methods aim to reduce variance in the bias-variance trade off
 - e.g. repeated cross-validation to estimate penalty factors in penalized regression

• Machine learning (AI) focuses on ensemble methods and super learners
 - these approaches aggregate predictions over many models
 - recommended to ‘address’ instability concerns & improve upon single model

e.g. Random forest is a popular ensemble method
• Uses BAGGING (bootstrap aggregating) to generate predictions over multiple models
• Includes a random element to feature selection, to limit the correlation across models
• Let’s see how random forest performs here …
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Example 2: lasso vs. random forests
• SMALL: 500 patients, 35 events, 4 events per predictor
LASSO logistic regression:

49

• SMALL: 500 patients, 35 events, 4 events per predictor
RANDOM FOREST: (100 trees – default settings):
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ASIDE: ML versus statistical methods
• This is not the debate!

• Rather: identify the right method to answer the right research question

• Machine learning methods have much potential, but

 - usually require a (much) larger sample size for stability

 - black-box aspect concerning for transparent, shared decision making

• Thus, consider stability and transparency when choosing development method

• Explainable AI and fairness checks futile when there is instability!
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A note on sample size for model development
• Without a decent sample size, you’re in trouble

• We proposed guidance for (penalized) regression approaches – see refs at end

- Target precise estimation of the overall risk (or mean value)
- Target small MAPE (mean absolute prediction error)

- Target small amount of overfitting (e.g. shrinkage of < 10%)

• Available in the pmsampsize package for R or Stata

• Focused on (penalized) regression models – but still relevant for machine learning
• Provides ‘minimum’ required 

 - still check stability though (often not small)
51www.prognosisresearch.com                           @Richard_D_Riley



www.prognosisresearch.com                           @Richard_D_Riley

Stata module by Ensor: PMSAMPSIZE

52

Binary outcome example: Cox-Snell R2 0.2, outcome 50%, p = 30
. pmsampsize, type(b) rsquared(0.2) parameters(30) prev(0.5)

                   | Samp_size   Shrinkage   Parameter        Rsq    Max_Rsq        EPP 
-------------+------------------------------------------------------------------
  Criteria 1 |      1194          .9                30                     .2        .75                 19.9 
  Criteria 2 |       701           .842            30                     .2        .75                 11.68 
  Criteria 3 |       385            .9                30                     .2        .75                 6.42 
-------------+------------------------------------------------------------------
       Final    |      1194            .9               30                     .2        .75                 19.9 

Minimum sample size required = 1194, with 597 events

EPP = 19.9
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Stata module by Ensor: PMSAMPSIZE
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. pmsampsize, type(b) rsquared(0.5) parameters(30) prev(0.5)

                   | Samp_size  Shrinkage  Parameter        Rsq    Max_Rsq        EPP 
-------------+------------------------------------------------------------------
  Criteria 1 |       370             .9              30                     .5        .75                6.17 
  Criteria 2 |       556             .93            30                     .5        .75                9.27 
  Criteria 3 |       385             .93            30                      .5       .75                6.42 
-------------+------------------------------------------------------------------
          Final |       556             .93            30                      .5        .75                9.27 

Minimum sample size required = 556, with 278 events

EPP = 9.27

Binary outcome example: Cox-Snell R2 0.5, outcome 50%, p = 30



Example using minimum sample size: lasso
• MINIMUM: 752 participants (53 events), 7 predictors 
PREDICTION INSTABILITY PLOT

54

CALIBRATION INSTABILITY PLOT
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A note on sample size for model validation
• For external validation, the focus is on estimation of predictive performance  

 (e.g. calibration, discrimination & clinical utility)

• Thus, minimum sample size should target precise estimates of performance

• We proposed guidance for continuous, binary and survival outcomes

• User must input

- linear predictor distribution

- outcome proportion (mean outcome value)

- target confidence interval widths

- calibration performance (e.g. slope & O/E = 1)

•   pmvalsampsize (just released!)
55www.prognosisresearch.com                           @Richard_D_Riley



Summary
• A diverse set of researchers 

are working on prediction 
models in healthcare

• Current standards very poor
• Regardless of analytic skills & 

background, we need to
 - be better trained
 - educate others
 - enforce high standards
 - aim for stable models
 - consider sample size
 - focus more on validation 
 - target clinical impact
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COURSES AT BIRMINGHAM (online)
• Statistical methods for risk prediction & prognostic models

• Statistical Methods for IPD Meta-analysis

*** CHECK OUT www.prognosisresearch.com ***
Aiming to improve prognosis research in healthcare. 
Disseminating good practice, latest methods, introductory 
videos, software, training courses and more

http://www.prognosisresearch.com/

